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Abstract

One of the biggest bottlenecks in developing machine learning applications today is the

need for large hand-labeled training datasets. Even at the world’s most sophisticated tech-

nology companies, and especially at other organizations across science, medicine, indus-

try, and government, the time and monetary cost of labeling and managing large training

datasets is often the blocking factor in using machine learning. In this thesis, we describe

work on training data management systems that enable users to programmatically build and

manage training datasets, rather than labeling and managing them by hand, and present al-

gorithms and supporting theory for automatically modeling this noisier process of training

set specification in order to improve the resulting training set quality. We then describe ex-

tensive empirical results and real-world deployments demonstrating that programmatically

building, managing, and modeling training sets in this way can lead to radically faster, more

flexible, and more accessible ways of developing machine learning applications.

We start by describing data programming, a paradigm for labeling training datasets pro-

grammatically rather than by hand, and Snorkel, an open source training data management

system built around data programming that has been used by major technology compa-

nies, academic labs, and government agencies to build machine learning applications in

days or weeks rather than months or years. In Snorkel, rather than hand-labeling train-

ing data, users write programmatic operators called labeling functions, which label data

using various heuristic or weak supervision strategies such as pattern matching, distant

supervision, and other models. These labeling functions can have noisy, conflicting, and

correlated outputs, which Snorkel models and combines into clean training labels without

requiring any ground truth using theoretically consistent modeling approaches we develop.

We then report on extensive empirical validations, user studies, and real-world applications
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of Snorkel in industrial, scientific, medical, and other use cases ranging from knowledge

base construction from text data to medical monitoring over image and video data.

Next, we will describe two other approaches for enabling users to programmatically

build and manage training datasets, both currently integrated into the Snorkel open source

framework: Snorkel MeTaL, an extension of data programming and Snorkel to the setting

where users have multiple related classification tasks, in particular focusing on multi-task

learning; and TANDA, a system for optimizing and managing strategies for data augmen-

tation, a critical training dataset management technique wherein a labeled dataset is artifi-

cially expanded by transforming data points. Finally, we will conclude by outlining future

research directions for further accelerating and democratizing machine learning workflows,

such as higher-level programmatic interfaces and massively multi-task frameworks.
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Software, Data, and Further Reading

• Code, tutorials, blog posts, and related publications about Data Programming and

Snorkel (Chapters 3 and 4) can be found at https://snorkel.org

• Code and tutorials for Snorkel MeTaL (Chapter 5) can be found at https://github.

com/HazyResearch/metal; however, note that codebase has since been depre-

cated, as the core functionalities of Snorkel MeTaL have moved into the Snorkel

repo above as of Snorkel version 0.9.

• Code and tutorials for TANDA (Chapter 6) can be found at https://github.

com/HazyResearch/tanda-release, and are also integrated into the Snorkel repo

above as of Snorkel version 0.9.

• Further information and links relevant to this dissertation can be found at https:

//ajratner.github.io
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Chapter 1

Introduction

Recent advances in techniques and infrastructure have led to a flurry of excitement about

the capabilities of machine learning (ML), leading some to even call it a new “Software

2.0” [Karpathy, 2017]. At the core of this excitement is a breed of new (mostly deep

learning) models that learn their own features from data, leading to qualitative leaps in

performance on traditionally challenging benchmark tasks, while obviating the need for

what many machine learning developers and organizations previously spent years doing-

engineering model features by hand. Together with massive technical and financial invest-

ment in open-source machine learning frameworks like TensorFlow [Abadi et al., 2016],

PyTorch [Paszke, 2017], and others, and ‘model zoos’ like Onnx [Bai et al., 2019], state-

of-the-art machine learning approaches have in many ways never been more accessible or

efficient to apply.

The rise of modern representation learning methods, supported by robust and standard-

ized frameworks, offers the potential for fundamentally simpler, more accessible, and more

flexible ways of developing data-driven software. For example, even five years ago, a

developer attempting to solve a complex task with machine learning–for example, an in-

formation extraction task like extracting facts about chemical-disease correlations from the

scientific literature, or an image classification task like triaging chest radiographs–might

have had to invest a PhD-length time period into developing problem-specific features (e.g.

complex linguistic and biological prefix features for relation extraction, or Sobel opera-

tor and Fourier analysis-based features for radiograph images); models defined over those

1



CHAPTER 1. INTRODUCTION 2

features; and algorithms for performing learning and inference. Today, to a first approxi-

mation, practitioners can often apply a state-of-the-art machine learning model to these or

many other tasks in a few hours or less of writing Python code within a standardized, open

source machine learning framework. This shift has had impact everywhere from small aca-

demic labs to the largest machine learning organizations in the world. For example, Google

reportedly reduced one of its translation code bases from 500 thousand to approximately

500 lines of much more standardized, deployable, and easily maintainable code [Wu et al.,

2016; Dean], and it has become commonplace for individuals and organizations alike to

quickly spin up high-performing machine learning-based applications where years of effort

might have once been required.

However, these increasingly accessible and powerful machine learning approached all

rely on one key limiting reagent: large, hand-labeled training datasets. In supervised ma-

chine learning, which we will consider for the remainder of this dissertation, models are

learned by fitting to training datasets consisting of data points labeled, generally by hand,

according to the desired classification. While training data has always been both a bot-

tleneck and an accelerant to machine learning, modern machine learning models generally

achieve their impressive feat of automated representation learning by being massively over-

parameterized, often having hundred of millions of free parameters. This model complexity

in turn means that they require massive training sets in order to reach peak performance,

and the cost and difficulties of building these training sets are often the achilles heel of

modern machine learning approaches.

Training datasets, especially ones requiring domain expertise and dealing with private

data that cannot be shipped external to an organization, are often prohibitively expensive

and slow to create; and, as real world data distributions and modeling objectives shift and

evolve, labeled training sets are completely inflexible, and thus lead to the need for expen-

sive and frequent re-labeling. In the Google translation example mentioned, the perfor-

mance, deployment, and maintainability benefits of the new deep learning approach were

predicated on 36 million hand-labeled examples per language pair. And the rosy picture

painted of a practitioner applying modern state-of-the-art models to chemical-disease in-

formation extraction or radiological imaging tasks in hours is often bottlenecked on the

prerequisite of a biologist or radiologist spending person months or years hand-labeling
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Insufficient labeled training data

Expert Hand-
Labeling

Subject matter
experts (SMEs)

label data
by hand

Weak Su-
pervision

Label data in
cheaper but
noisier ways

Semi-
Supervised
Learning

Use additional
unlabeled

data directly

Transfer
Learning

Share labeled
data across

models / datasets

Traditional
Supervision
SMEs label

data randomly

Active Learning
Automatically

select more
valuable data

points for
SMEs to label

Crowdsourcing
Use many
cheaper,

lower-quality
human labelers

Programmatic
Supervision

Use program-
matic heuris-
tics to label
training data

Pre-training
Use a model or
representation

trained on
task/dataset A,

on task/dataset B

Multi-Task
Learning

Share a repre-
sentation across

tasks/datasets
A1, . . . , At

Heuristic
Supervision
Label data

with rules and
other heuristics

Distant
Supervision

Label data by
heuristically

using an external
knowledge base

or metadata

Data Aug-
mentation

Generate more
labeled data by

transforming
existing

labeled data

Other Models
Use other

lower-quality
and/or biased

models to label
training data

Figure 1.1: A high level mapping of several classic and popular approaches for handling
a lack of labeled training data. At the topmost level, we group the strategies into those
that (i) involve having subject matter experts label individual data points, (ii) label data
in weaker ways—the primary focus of this thesis, and highlighted in blue—(iii) utilize
additional unlabeled data directly, and (iv) try to share labeled training data across tasks.
These methods of course have many connections and commonalities not illustrated in this
figure (for example, in Chapter 5 we describe work on weak supervision for multi-task
learning models).
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training data.

The dependence of modern machine learning approaches on large labeled training

datasets has led to a resurgence of interest in various techniques, both classic and new,

for dealing with a lack of labeled training data (Figure 1.1). These include active learn-

ing, where the goal is to solicit expert-annotated labels for specially-chosen data points,

rather than over random samples, with the goal being to ultimately require fewer labeled

data points [Settles, 2009]; semi-supervised learning, in which, in addition to a small la-

beled training set, various heuristics or regularizers are used over a larger unlabeled dataset

[Chapelle et al., 2009]; and transfer learning, in which the high level goal is to share in-

formation across different models or datasets [Pan and Yang, 2010]; for more detail, see

Section 2.2.

However, another approach, which we aim to support, formalize, and demonstrate the

effectiveness of in this thesis, is weak supervision, where training data is labeled or other-

wise generated in noisier, cheaper, often programmatic ways. While the aforementioned

methods attempt to do more with fewer hand-annotated labels, weak supervision changes

the type of input that users are asked to provide to supervise a machine learning model.

Classic examples include distant supervision [Mintz et al., 2009; Craven et al., 1999],

where an external knowledge base is heuristically used to label data; crowdsourcing ap-

proaches [Dawid and Skene, 1979; Karger et al., 2011; Dalvi et al., 2013] where crowd

workers of unknown reliability are used to label data; and many others (see Section 3.5).

Weak supervision–and in particular, the types of programmatic supervision that the systems

developed in this thesis support–has the appeal of still providing a direct and pragmatic in-

terface for users to supervise models, but in higher level ways that are far more scalable,

efficient, interpretable, and adaptable. For this reason, weak supervision has had a resur-

gence of interest in the modern deep learning era.

The rise of weaker supervision can be seen as a fundamental shift in how practitioners

principally interact with and program machine learning models: via the creation, engi-

neering, and management of training data. Increasingly, this training data engineering is

a central development activity which is done in higher-level, more programmatic ways,

and can be seen as an entirely new way of programming the new ML stack. Emerging

techniques, which this thesis advances and evaluates, include labeling data in higher-level,
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Figure 1.2: Machine learning developers increasingly interact with models not by tradi-
tional activities such as feature engineering or model architecture development, but rather
through the creation, engineering, and more broadly, management of labeled training data
through activities such as labeling, augmenting, and reshaping datasets.

programmatic, and/or noisier ways (often called weak supervision), such as using heuris-

tics, patterns, existing datasets and models, or crowd labelers to label training data; aug-

menting datasets by creating transformed copies of labeled data points, thereby expressing

data invariances (e.g. rotational or shift symmetries in images) in a simple, model-agnostic

fashion; reshaping datasets, e.g. to emphasize performance critical subsets; and combin-

ing datasets, e.g. across related tasks. However, to date, these emerging approaches have

generally been applied in heavily manual and ad hoc ways, relegated to the preprocessing

and data loader scripts of machine learning pipelines where they are seen as ‘tricks’, rather

than supported and formalized as key first-class operators of a new approach to machine

learning.

Contributions and Outline In this thesis, we describe work on training data manage-

ment systems that support the emergence of training data engineering as a first-class citizen

of the machine learning workflow by enabling users to programmatically build and manage

training datasets rather than label them by hand. We present algorithms and supporting the-

ory for automatically modeling this noisier process of training set specification, which place

these new techniques on more solid statistical and systems ground. Finally, we present em-

pirical validations, user studies, and real-world deployments demonstrating that this new

approach of programmatically building, managing, and modeling training datasets can lead

to radically faster, more flexible, and more accessible ways of developing machine learning

applications.
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def lf_1(x):
return heuristic(x)

def lf_2(x):
return classifier(x)

def lf_3(x):
return re.find(p, x)

PROGRAMMATIC LABELING DATA AUGMENTATION & RESHAPING MULTI-TASK SUPERVISION

Augmentation 
Model

(a) (b) (c)

Figure 1.3: Creating and managing training data has emerged as one of the key ways that
developers can effectively program the modern machine learning stack. This dissertation
covers work on systems and approaches aimed at formalizing, accelerating, and supporting
techniques such as (a) programmatic data labeling (Chapters 3 and 4); (b) data augmen-
tation and training set reshaping (Chapter 6) and (c) multi-task supervision (Chapter 5),
which in practice form key parts of the emerging training data management pipeline.

In Chapter 2, we start by reviewing some preliminaries of this thesis. In Chapter 3,

we then describe data programming [Ratner et al., 2016], an approach whereby practition-

ers, rather than hand-labeling training data, write labeling functions that heuristically label

some subset of an unlabeled dataset. These labeling functions can express various heuristic

or weak supervisionstrategies, such as distant supervision, crowdsourcing, pattern-based

labeling, and arbitrary domain heuristics, and in general will have unknown accuracies and

correlations, leading to overlaps and conflicts in their outputs. To handle this, we learn a

generative label model to attempt to optimally re-weight and combine the noisy outputs of

the labeling functions. The key challenge is learning this model in the absence of ground

truth labels; this can be viewed as a novel type of data cleaning problem, or equivalently

a latent variable model estimation problem for an extended class of labeling models. We

describe two techniques for overcoming this technical challenge, and provide correspond-

ing theoretical guarantees: in Section 3.2, a maximum marginal likelihood approach which

we implement using stochastic gradient descent and Gibbs sampling [Ratner et al., 2016];

and in Section 3.3, a matrix-completion style approach [Ratner et al., 2019b]. In Section

3.4, we also describe several methods for estimating the structure of correlations between

the labeling functions, which is essential to handling labeling functions that are correlated

e.g. to shared data resource, code, or underlying heuristics [Bach et al., 2017; Varma et al.,

2019, 2017].

Given the estimated label model, we then reweight and combine the outputs of the
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labeling functions to produce a clean, confidence-weighted set of training labels, which

we can then use to train an arbitrary machine learning model, where the goal is for this

end model to generalize beyond the labeling functions. We establish theoretical conditions

under which, as the number of unlabeled data points the labeling functions are applied to

increases, the generalization error of this end model converges at the same asymptotic rate

as in traditional supervised methods- except in our case, with respect to unlabeled data.

In Chapter 4, we describe Snorkel [Ratner et al., 2017a], an end-to-end training data

management system built around the data programming paradigm for rapidly and pro-

grammatically labeling training sets. In Snorkel, users start by writing labeling functions

using various tools and interfaces, including common declarative weak supervision opera-

tors, that are applied over unlabeled data stored in a hierarchical data model. Snorkel then

learns the structure and parameters of a generative label model over the matrix of labeling

function outputs, and finally uses this to produce a set of probabilistic training labels which

can be used to train any standard machine learning model e.g. in TensorFlow or PyTorch.

In Section 4.2, we discuss a new tradeoff space around when, and with what correlation

structure density, to use the generative label model in the context of iterative user develop-

ment where speed of iteration is given a significant premium. In Section 4.3, we experimen-

tally validate Snorkel on six datasets, including two based on real-world collaborations—

one around information extraction from electronic health records with the U.S. Department

of Veterans Affairs and Stanford Hospital and Clinics, and one around information extrac-

tion from the scientific literature with the U.S. Food and Drug Administration—and two

cross-modal settings where the labeling functions are applied to one feature set or modality

(e.g. text) that is disjoint from the feature set or modality (e.g. images) that the end model is

trained over and applied to, showing the flexibility of Snorkel to effectively transfer domain

knowledge from one modality to another.

The broader goal of this thesis, and of the open source Snorkel project1, is to demon-

strate that enabling users to programmatically build, manage, and model training datasets

can provide a new interface to machine learning that is both more accessible and more ef-

fective in real-world settings. In Section 4.4, we provide validation for the accessibility of

these approaches by describing a Snorkel user study, conducted with fifteen researchers that

1https://snorkel.org

https://snorkel.org
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were invited to attend a two-day Snorkel workshop, having had no prior Snorkel (and min-

imal programming or machine learning) experience. We show that Snorkel indeed leads

to more accessible machine learning, and better performance than spending a comparable

amount of time simply hand-labeling training data. Finally, in Section 4.5, we provide val-

idation for the real-world effectiveness of these approaches by giving a brief overview of

several real-world deployments of Snorkel in industry, at Google [Bach et al., 2019], Intel

[Bringer et al., 2019], and others; in medicine, in collaboration with Stanford Radiology

and Neurology [Dunnmon et al., 2019], and others; in information extraction for genomics

[Kuleshov et al., 2019]; and in other settings, where in many of these applications, Snorkel

leads to building machine learning applications in days or weeks of development rather

than months or years of hand-labeling.

In Chapter 5, we extend the data programming paradigm and Snorkel system to settings

where users have more than one, possibly related, modeling tasks that they need to build and

manage training datasets for, and investigate whether modeling this multi-task supervision

jointly can improve performance. We extend the matrix completion-style data program-

ming approach in Section 3.3 to the multi-task setting, and validate it on several fine grain

entity and relation extraction tasks. We also briefly describe a new open source system

for multi-task supervision and multi-task learning, Snorkel MeTaL2, which has since been

merged into the main Snorkel framework3.

In Chapter 6, we consider a second distinct but complementary way of programmat-

ically building and managing training datasets–data augmentation, in which transformed

copies of labeled training data points are used to expand the size of a training set–and

develop a paradigm and approach for modeling, tuning, and managing this form of pro-

grammatic weak supervision input [Ratner et al., 2017c]. The canonical example of data

augmentation in practice is randomly rotating, stretching, and blurring labeling images be-

fore training a computer vision model; more broadly, data augmentation is applied in many

settings and data modalities where there are transformation operations that with reasonable

2https://github.com/HazyResearch/metal
3As of version 0.9.

https://github.com/HazyResearch/metal
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likelihood will preserve the class label of transformed data points. In many machine learn-

ing applications—for example, nearly all state-of-the-art models in image classification—

data augmentation is an absolutely critical technique for enhancing performance, and can

be viewed as a way of imposing knowledge of invariances in a model-agnostic way, by

expressing it via the training data. However, data augmentation strategies can be hard to

tune and compose for new datasets (e.g., ‘how much to rotate? How much to blur?’),

and in practice are mostly applied in ad hoc and manually-tuned ways without any for-

mal support or optimization. We describe an approach wherein users provide incremental

transformations as programmatic operators called transformation functions, and we then

automatically learn to tune and compose them using a generative adversarial approach. We

describe a system for data augmentation built around this approach, TANDA4, and describe

empirical validation on a range of text and image datasets.

Finally, in Chapter 7, we review some concluding thoughts, and outline some future

directions for work on programmatically building, managing, and modeling training data,

and beyond.

4urlhttps://github.com/HazyResearch/tanda



Chapter 2

Preliminaries

In this section, we provide additional background both to situate this work and contextu-

alize some key technical pieces. In Section 2.1, we provide a brief additional perspective

on the shift to training data as a focal point for machine learning development. In Sec-

tion 2.2 we then provide a high level overview of traditional approaches for dealing with

the bottleneck of labeled training data, which naturally come to the forefront as training

data becomes increasingly critical. Next, in Section 2.3, we briefly review the basics of

prior approaches to learning the parameters of latent variable models, e.g. for learning the

accuracies of weak supervision sources, a key technical building block of the algorithms

and results in Sections 3, 4, and 5. Finally, in Section 2.4, we briefly review existing work

related to data management for training data.

2.1 The Transition to Training Data as the Bottleneck

Supervised Learning In this thesis, we focus on supervised learning, in which the goal

is to use a training dataset of labeled data points to select a model that correctly labels

new data points. That is, we have data points x ∈ X (e.g. a document or an image)

and labels y ∈ Y (e.g. binary or categorical labels), and a dataset of labeled examples,

T = {(x(1), y(1)), . . . , (x(n), y(n))}, which we refer to as a labeled training set. Our goal is then

to select a function h : X 7→ Y that, when given a new unseen test data point, x ∈ X,

accurately predicts the corresponding label y. In general, we assume that all data points,

10
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Figure 2.1: A simple example of a supervised learning task where the goal is to classify
text comments as spam or not. In a traditional supervised learning approach, our training
set would consist of labeled examples (i); we would then extract features, for example
indicating whether certain words, word sequences, or other objects were present in in the
text comment (ii); and finally, we would train a model defined over those features–that is,
select a set of parameters w–such that the model predictions matched the training labels as
much as possible (iii).

both training and test, are i.i.d. sampled from some underlying distribution, (x, y) ∼ D.

As a concrete example, we consider a canonical supervised learning problem: classi-

fying whether or not a text comment represents spam (i.e. irrelevant or malicious content)

or not (Figure 2.1). Here, our data point x is a string of characters, and y ∈ {0, 1} where 1

denotes spam, and 0 denotes not spam. Our goal is to train a machine learning model that

can accurately classify new, unlabeled data points.

The standard procedure in supervised learning is to first select a model or hypothesis

class, H , such that h ∈ H . In general, we consider hypothesis classes that are parameter-

ized, meaning that a vector w specifies a hypothesis function hw ∈ H , and use this notation

from here on out.

Let l : Y × Y 7→ [0, 1] be a loss function, for example the zero-one loss l(ŷ, y) =

1 {ŷ , y}. Then, given a fixed hypothesis class, our goal in supervised learning can be

succinctly described as finding parameters w∗ which minimize the expected loss or risk R:

w∗ = argminw R(w) = argminw E(x,y)∼D
[
l(hw(x), y)

]
The standard way we approach this is to select the parameters that minimize the loss
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over the training set, or the empirical risk R̂, termed the empirical risk minimizer

ŵ = argminw R̂(w) = argminw
1
n

∑
(x,y)∈T

l(hw(x), y)

Feature Engineering In many real-world settings of interest, x is a very complex and

high-dimensional object, making the selection of a model challenging. For example, x

might be an unstructured data point like a document or an image that we wish to classify.

Even in our running spam example, where x is a short text comment, the space of possible

configurations is combinatorially large. A traditional approach to handling this type of

data is to introduce an intermediate step of extracting a subset of features of x, φ(x) ∈ Rd,

that the model takes as input. For simplicity, we can represent this feature extraction or

engineering step as part of the hypothesis class definition, where now

hw = gw ◦ φ

that is, we view feature engineering as a form of model engineering. For example, in

our running example, we might think that the absence or presence of certain words, word

sequences, other objects like links, and potentially other complex patterns (e.g. having

to do with grammar, tone, format, or structure) might all be relevant features for making

the spam-versus-not-spam classification (Figure 2.1 (ii)). Given that we are using a ma-

chine learning approach, we do not have to set the weights of how important these features

are–our model will learn this from data–however coming up with the relevant feature set is

still a tricky and onerous task.

For many years in practice, this task of feature engineering—i.e. the process of design-

ing this function φ—was arguably the dominant activity that a machine learning engineer

engaged in, as well as a significant focal point of research. For example, in natural language

processing, a wealth of work has been performed exploring the optimal set of linguistic and

semantic features (e.g. words, word sequences or “n-grams”, grammatical dependency sub-

structures, etc.) to extract for various modeling tasks. Similarly, in image classification or

computer vision, various sophisticated approaches to feature extraction have been the focus

of heavy research. A review of the feature engineering literature is outside the scope of this
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thesis, however good overviews can be found in [Guyon and Elisseeff, 2003; Guyon et al.,

2006] as well as in a wide range of machine learning textbooks, blog posts, and tutorials.

Modern Representation Learning Methods One of the most impactful and widely-

observed trends in machine learning over the last several years has been the rise of deep

learning model architectures, which learn their own feature extractors, or representations of

the raw input data, and have largely obviated the traditional practice of feature engineering

in a range of traditionally challenging domains such as computer vision, natural language

processing, and beyond. While these new deep learning approaches rest on decades of

research and a recent surge of academic and industrial innovation, their success and pop-

ularity can also be largely attributed a heavily-funded ecosystem of open source platforms

(e.g. TensorFlow [Abadi et al., 2016], PyTorch [Paszke, 2017], and others), model zoos

(e.g. Onnx [Bai et al., 2019]), a wide range of associated tools, and increasingly declara-

tive interfaces (e.g. Keras [Chollet et al., 2015], Ludwig [Molino, 2019], and many others).

The net effect is that where a decade ago building a machine learning pipeline might have

required thousands of lines of feature engineering and learning algorithm code, sophisti-

cated models can now be defined in dozens of lines of code or less.1 For instance, in our

running spam example, rather than having to do any feature engineering, we might simply

feed the raw text data, x, into a Long Short-Term Memory (LSTM) network or other re-

current neural network architecture, which due to modern machine learning frameworks,

would require only several lines of code.

While this new deep learning tool chain has raised a range of challenging research

questions and practical issues—e.g. around interpretability, scalability, robustness, and the

like—we focus here on the practical impact: it has made building machine learning mod-

els easier than ever before where large labeled training sets are available. An increasingly

large number of applications in traditionally challenging domains like computer vision and

natural language processing now get state-of-the-art scores using standard, effectively com-

moditized model architectures like LSTMs and Convolutional Neural Networks (CNNs).

One application which exemplifies this is Google’s machine translation system: in 2016,

1E.g. see Keras’s intro tutorial, “30 seconds to Keras”, https://keras.io/
#getting-started-30-seconds-to-keras

https://keras.io/#getting-started-30-seconds-to-keras
https://keras.io/#getting-started-30-seconds-to-keras
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a Google team reported on a new deep learning-based machine translation model that re-

duced errors by an average of 60% compared to a previous production model [Wu et al.,

2016]. However, arguably the biggest impact was that this model enabled the team to throw

out approximately five hundred thousand lines of feature engineering code and replace it

with approximately five hundred lines of generic and portable TensorFlow code2.

The catch in general is that these new deep learning models are highly complex, of-

ten with hundreds of millions of parameters, and require massive labeled training datasets

to reach peak performance [Sun et al., 2017]. For example, the aforementioned Google

Translate model relied on a manually labeled training dataset of 36 million examples, for

one language pair; and other state-of-the-art deep learning results have often relied on sim-

ilarly large labeled training datasets. A survey of deep learning methods and systems, and

their dependence on large volumes of labeled training data, is once again outside the scope

of this thesis. Instead, we anchor on the broad idea that in a wide range of settings, machine

learning has become vastly easier to use without nearly any feature engineering- if a large

enough labeled training dataset is available.

The Transition from Feature to Training Data Engineering This thesis is motivated

by the observation that many practitioners have begun to use deep learning models that re-

quire very little feature engineering, but that in turn require large volumes of labeled train-

ing data. As a result, these practitioners have shifted from largely focusing on traditional

data and feature engineering activities, to increasingly spending their time on training data

engineering: labeling, building, and managing training datasets.

One perspective is that this shift in machine learning development effort can be seen

as flipping the old intuition of how to build and improve machine learning models on its

head. More concretely, we can view this through the lens of traditional machine learning

theory. While this theoretical perspective is not meant to be taken as a literal guide—

and potentially lacks explanatory power in the context of today’s deep, over-parameterized

model classes in a more serious way [Zhang et al., 2016a]—it has served as the root of

machine learning developers’ practical rules of thumb for many years, and so provides

some relevant intuition in this context.
2https://twitter.com/DynamicWebPaige/status/915326707107844097

https://twitter.com/DynamicWebPaige/status/915326707107844097
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We define VC(H) as the VC dimension of our model or hypothesis class, a classic

measure of the complexity ofH , and recall that we parameterizeH by w. Let n once again

be the number of training data points—which we will assume are sampled i.i.d. from some

distribution D and are labeled—and recall our definition of the risk, R(w) and empirical

risk R̂(w), and let w∗ and ŵ be the risk and empirical risk minimizers respectively. Then,

a classic result bounds the generalization error—i.e. the difference in risk between the

optimal model w∗ and empirically estimated model ŵ—by [Liang, 2019]:

R(ŵ) − R(w∗) ≤ O


√

VC(H)
n/ log(n)

 (2.1)

At a high level, we can view the feature engineering-approach of machine learning de-

velopment as an attempt to improve model performance by reducing the complexity of the

model (the numerator of the right-hand side of (2.1)) given a relatively small, fixed training

set size n. That is, features are easy to think of (e.g. for images: any indicator for a specific

combination of pixels could be a feature), and so feature engineering primarily consists

of attempting to select a good subset of the possible features, i.e. attempting to reduce

the model complexity. On the other hand, we can view the approach taken with modern

representation learning models as motivated by the exact opposite strategy: developers use

massively complex model classes, and instead focus on building large enough training sets

(the denominator of the right-hand side of (2.1)).

Regardless of the above intuition, a large part of the machine learning ecosystem today

exists in a state where practitioners are most often bottlenecked on needing more training

data, and thus increasingly turn to a range of techniques, both classic and new, for dealing

with this, which we now provide high level background on.

2.2 Dealing with Limited Labeled Data

For reasons outlined above, having to do with the performance and accessibility advantages

of modern machine learning models that are complex and data-hungry, getting large enough

training datasets has emerged as one of the most prominent bottlenecks in machine learning
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application development. However, a diverse range of classical techniques can be viewed

as ways of addressing this issue of limited labeled training data, which we briefly review

in this subsection. To additionally ground and motivate this section—and to a large degree,

this thesis overall—we refer to the human labelers that can label training or test data with

high enough accuracy as the subject matter experts (SMEs), and are especially motivated

by settings where the SMEs must have some non-trivial domain knowledge, e.g. doctors,

analysts, etc. For example, in our simple running example of comment spam classification,

a SME might be someone who is well versed in the nuances of the spam policy of the forum

hosting the comments.

At a high level, we consider four classic strategies for dealing with the problem of

insufficient labeled training data (Figure 1.1):

1. Expert Hand-Labeling: The standard approach in supervised learning of having

SMEs label individual training data points by hand (often still with several labelers

per data point in difficult or critical settings). Here, concretely, the input to our overall

learning procedure is a labeled training set T = {(x(1), y(1)), . . . , (x(n), y(n))}.

2. Weak Supervision: The broad class of approaches where training data is labeled in

heuristic, often programmatic, and/or noisier ways that are cheaper and more efficient

than expert hand-labeling. Weak supervision is the focus of the methods and systems

described in this thesis. Concretely, here the input to our learning procedure is a

weakly supervised labeled training set, T̃ = {(x(1), ỹ(1)), . . . , (x(n), ỹ(n))}, where ỹ(i)

represents our weak labels and could be a vector of potentially conflicting labels, and

moreover might be generated programmatically, as in the approaches described in

this thesis.

3. Semi-Supervised Learning: The approach of using an unlabeled dataset as a com-

plement to a smaller, expert-labeled training set. While there are many similarities to

weak supervision, semi-supervised approaches generally use domain agnostic con-

straints or assumptions over the unlabeled data, as opposed to input from SMEs, and

also require some set of expert-labeled training data. Here our input is a small labeled

training set as above, T = {(x(1), y(1)), . . . , (x(n), y(n))}, and a larger unlabeled training

set TU = {x(n+1), . . . , x(n+nU )}.
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4. Transfer Learning: The high-level strategy of transferring models or learned rep-

resentations from one modeling task and/or dataset or another, in order to get more

out of fewer labeled training datasets. Here we might have multiple training sets, Tt,

and the goal is to somehow transfer information between them in ways that increase

practical efficiencies.

We now briefly review each of these categories of approaches; further detail is given in

the cited survey references and, where relevant, in the related work sections of subsequent

chapters.

Expert Hand-Labeling: The standard approach in supervised learning is to have subject

matter experts (SMEs) label individual training data instances by hand, often with multiple

labelers per data point. Especially for settings where domain expertise is required (e.g.

requiring doctors of a certain specialty for a medical triaging problem), data privacy is a

concern (where labelers therefore must have proper clearance), and where problem input

data or output schema are often changing (thus necessitating re-labeling), this standard

approach of hand-labeling training data can be prohibitively expensive, slow, and static.

Active learning is one classic means of addressing this, wherein the goal is to make

use of subject matter experts more efficiently by having them label data points which are

estimated to be most valuable to the model; for a good survey, see [Settles, 2009]. Tra-

ditionally, applied to the standard supervised learning setting, this means selecting new

data points to be labeled–for example, in our running spam example, we might hope to

iteratively select comments that are very unique and/or close to the current decision bound-

ary for SME labeling. However, we could also just ask for weaker supervision pertinent

to these data points, in which case active learning is perfectly complementary with weak

supervision; as one example of this, see [Druck et al., 2009].

Weak Supervision: Weak supervision is the approach of labeling training data in cheaper

and/or higher-level, often programmatic ways. In general, weak supervision centrally in-

volves human input, but either from lower-quality sources—e.g. non-expert crowd workers—

or provided in higher-level, more efficient ways than labeling data points individually.
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Weak supervision is the major focus of this thesis; we provide a brief overview of ap-

proaches here, and later in Sections 3.5 and 4.6.

A classic weak supervision strategy is crowdsourcing [Krishna et al., 2016; Gao et al.,

2011], where a larger pool of non-expert and potentially unreliable ’crowd workers’ are

used in lieu of carefully-vetted subject matter experts. A wide range of classic work has

treated both practical systems, algorithmic, and theoretical aspects of this strategy [Dawid

and Skene, 1979; Karger et al., 2011; Parisi et al., 2014; Berend and Kontorovich, 2014;

Zhang et al., 2016b; Dalvi et al., 2013; Joglekar et al., 2015], which we build on in Chapter

3.

Distant supervision is another classic approach wherein existing knowledge sources

or metadata is used to heuristically label training sets. The canonical example is relation

extraction from text, wherein a knowledge base of known relations is heuristically mapped

to label a set of mentions in an input corpus as ground truth examples [Craven et al., 1999;

Mintz et al., 2009; Zhang et al., 2017a]. Other extensions take steps towards modeling

the quality of the distant supervision and other variations [Riedel et al., 2010; Hoffmann

et al., 2011; Roth and Klakow, 2013a; Alfonseca et al., 2012; Roth and Klakow, 2013b;

Takamatsu et al., 2012].

Another broader type of weak supervision is to use rules, patterns, or other heuristics

to label training data [Bunescu and Mooney, 2007; Shin et al., 2015; Mallory et al., 2015;

Gupta and Manning, 2014; Zhang et al., 2017a]. Weak supervision approaches also include

non-traditional types of supervision, such as having SMEs label features directly [Zaidan

and Eisner, 2008], directly specify expected label or feature distributions [Mann and Mc-

Callum, 2010; Liang et al., 2009], or specify constraints (which can also be viewed as

specifying a label distribution) [Stewart and Ermon, 2017; Clarke et al., 2010; Guu et al.,

2017].

Finally another popular and empirically critical technique that can be viewed as a form

of weak supervision is the practice of data augmentation, in which labeled training data

points are transformed in order to programmatically expand, or augment, the training

dataset; the canonical example is randomly rotating images before training a computer

vision model, but many more advanced techniques for performing and/or automating data

augmentation have been proposed [Graham, 2014; Dosovitskiy et al., 2015; Uhlich et al.,
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2017; Lu et al., 2006; Ciresan et al.; Dosovitskiy et al., 2015; Chawla et al., 2002; DeVries

and Taylor, 2017; Hauberg et al., 2016; Teo et al., 2008; Fawzi et al., 2016; Sixt et al.,

2016]. We can view this as a way of programmatically generating training data points by

using domain knowledge of invariances. We discuss data augmentation further in Chapter

6.

Overall, this thesis focuses on new data management systems, algorithmic approaches,

and theoretical grounding for weak supervision, and aims to build on, support, and subsume

many of the weak supervision approaches used in practice.

Semi-Supervised Learning: Semi-supervised learning considers the setting of a small

expert-labeled training set and a much larger unlabeled data set. At a high level, the ap-

proach is to then use some type of domain-agnostic assumption—e.g. about smoothness,

low dimensional structure, or distance metrics—to leverage the unlabeled data (either as

part of a generative model, as a regularizer for a discriminative model, or to learn a com-

pact data representation). For instance, in our running spam example, we might have access

to a very large unlabeled corpus of text comments, and choose to regularize our model such

that it tends to make a strong decision on each of these, or to select features such that the

unlabeled examples fall into discrete clusters (as two examples of classic semi-supervised

techniques). For a good survey of classic techniques see [Chapelle et al., 2009]. More

recent methods use adversarial generative [Salimans et al., 2016], heuristic transformation

models [Laine and Aila, 2016], and other generative approaches to effectively help regu-

larize decision boundaries. Broadly, rather than soliciting more input from subject matter

experts, the idea in semi-supervised learning is to leverage domain- and task-agnostic as-

sumptions to exploit the unlabeled data that is often cheaply available in large quantities.

Transfer Learning: In the standard transfer learning setting, the goal is to take one or

more models already trained on a different dataset or modeling task and apply them to a

dataset or task of interest; for a good overview see [Pan and Yang, 2010]. For example,

we might have a large training set for a text email classification problem, with classifiers

already trained on this set, and wish to apply these somehow to our own text comments

problem. A common and popular transfer learning approach today is to pre-train a model
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on one large dataset, and then “fine-tune” it on the task of interest. Another related and

diverse line of work is multi-task learning, where several tasks are learned jointly [Caruana,

1997]; for a good survey of modern multi-task learning approaches, see [Ruder, 2017].

2.3 Modeling Weak Supervision Sources

Many of the core algorithmic and theoretical challenges that this thesis examines focus on

the challenges of dealing with multiple weak supervision sources—i.e. sources of training

labels or other signals—that may have diverse and unknown accuracies, correlations, and

expertise areas. The key technical challenge in our setting is estimating and accounting

for these attributes in the absence of ground truth labels. To provide background for the

approaches we take to address this challenge, we start by reviewing a simple, classically-

considered setting that we extend and build on in this thesis: estimating the accuracies of

different conditionally-independent labelers in the absence of ground truth labels. We start

by setting up this basic problem and model in more detail. We then review two classic

approaches for solving it, in this simple conditionally-independent setting.

Problem Setup We consider a simple setting where, as in Section 2.1, labeled data points

are sampled i.i.d. from an underlying distribution, (x, y) ∼ D. However, in the weak

supervision setting, we do not observe the labels y. Instead, for each data point x, we

observe weak labels from m sources, λ1, . . . , λm, λ j ∈ Y, which we write in vector form as

λ.

In this preliminary example, we assume a simple model where these label sources are

conditionally independent given the unobserved true label y, i.e. λ j ⊥ λk, j | y. In the

crowdsourcing setting, this is a classic setting—often referred to as the Dawid-Skene model

[Dawid and Skene, 1979]—which represents an assumption that the weak sources make

uncorrelated errors. To simplify further, we assume that we are in a binary setting with

balanced classes, i.e. Y = {−1, 1}, P(y = 1) = P(y = −1) = 1/2. Furthermore, we assume

a model where the label sources have class-symmetric conditional probabilities that are

independent of the data point being labeled. That is, letting θ be the parameters of our
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weak supervision model, we assume:

pθ(λ j = 1|y = 1) = pθ(λ j = −1|y = −1)

where pθ represents the probability under the model parameterized by θ, which we shortly

define more explicitly.

We can then represent the joint distribution of our model of the weak supervision λ and

unobserved, or latent, true label y—which we refer to as the label model—by the following

distribution which factorizes:

pθ(λ, y) =

m∏
j=1

pθ(λ j|y)pθ(y) =
1
2

m∏
j=1

pθ(λ j|y)

where recall that this is the joint distribution for a single data point x.

Note that since we assume the data points are i.i.d. sampled, we can simply take the

product of the above distribution over all data points in e.g. our training set. Let Λ ∈ Rn×m

be the label matrix of all weak supervision labels for all n data points in a given dataset,

and let ~y ∈ Yn be the corresponding vector of true labels; then we write:

pθ(Λ, ~y) =

n∏
i=1

pθ(Λi, ~yi) ≡
n∏

i=1

pθ(λ(i), y(i))

For simplicity of notation however, whenever possible we avoid writing this out explicitly,

and consider a single i.i.d. data point.

We can now introduce a convenient representation of our parameterization; let:

pθ(λ j = 1|y = 1) =
exp(θ j)

exp(θ j) + exp(−θ j)

where θ is in this context a vector θ = [θ1, . . . , θm].

Then we can represent our label model distribution in a simple exponential family form:

pθ(λ, y) =
1
2

m∏
j=1

exp(θ jλ jy)
exp(θ j) + exp(−θ j)

=
exp(θTλy)∑

λ′∈{−1,1}m,y∈{−1,1} exp(θTλ′)
= Z−1(θ) exp(θTλy)
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where in our simple setting, λy is the sufficient statistic vector—or alternatively, in the

factor graph view we will use in certain chapters, the vector of factor functions—and Z(θ) =∑
λ′∈{−1,1}m,y∈{−1,1} exp(θTλ′) is the partition function. In the more complex versions of the

label model we consider in this thesis, we will retain the same exponential family form, but

with more complex sufficient statistic / factor functions and corresponding parameters.

Our objective is now to learn the parameters θ of this label model—corresponding in

this model to the accuracies of the weak supervision sources. If we can recover θ, then

we can estimate the true label, pθ(y|λ). The key technical challenge—which we will
review briefly here, and then more extensively tackle in this thesis—is learning these
parameters θ given that y is unobserved, or latent.

2.3.1 Classic Approaches

Expectation Maximization (EM) Algorithm The classic approach to solving this latent

variable model estimation problem is to use the expectation maximization (EM) algorithm,

and many prior works in the area of weak supervision modeling (most commonly, crowd-

sourcing) have relied on this algorithm. In the EM algorithm, we iteratively alternate be-

tween two steps in order to attempt to maximize the marginal likelihood of the observed

variables; in our setting, this is:

L(θ; λ) = pθ(Λ) =
∑
~y∈Yn

pθ(Λ, ~y)

To do this, we start with the expectation step, where we compute the expected value of

the log likelihood function with respect to the current estimate of the latent variables, i.e.

using the current parameters θ(t) at time step t. In our setting this quantity is:

1
n

Q(θ|θ(t)) =
1
n
E~y∼pθ(t) (~y|Λ)

[
log pθ(Λ, ~y)

]
=

1
n

n∑
i=1

Ey∼pθ(t) (y|λ(i))

[
log pθ(λ(i), y)

]
= − log Z(θ) +

1
n
E~y∼pθ(t) (~y|Λ)

[
~yT Λθ

]
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Next, in the maximization step, we update our parameter estimates to maximize Q(θ|θ(t)),

in other words θ(t+1) = argmaxθ Q(θ|θ(t)). To do this, we can compute the gradient:

0 = ∇θ

(
1
n

Q(θ|θ(t))
)

= −E(λ,y)∼pθ
[
λy

]
+

1
n
E~y∼pθ(t) (~y|Λ)

[
ΛT~y

]
where we use a useful lemma about the gradient of log partition function, that∇θ log(Z(θ)) =

E(λ,y)∼pθ
[
λy

]
(see Appendix 1).

This results in an intuitive update to our parameters. We see, letting α j be the accuracy

of the jth weak supervision source, that:

(
E(λ,y)∼pθ

[
λy

])
j
= pθ(λ j = y) − pθ(λ j , y) = 2α j − 1

where note that in our parameterization, α j = exp(θ j)/(exp(θ j) + exp(−θ j)). That is, in

the setting we consider here, the EM algorithm procedure is to iteratively match our cur-

rent estimate of the label source accuracies to their empirical accuracies according to the

conditional estimate of the latent variable y from the previous iteration:

α(t+1)
j =

1
2

(
1 +

1
n
E~y∼pθ(t) (~y|Λ)

[
ΛT~y

])
The EM algorithm is a commonly applied approach, however has at least two draw-

backs. First, the EM algorithm is only guaranteed to find a local minimum, i.e. to iteratively

increase the marginal likelihood; if we want to make any sort of convergence guarantees,

we need to move beyond this. Second, performing the update step as above—while appeal-

ingly simple in this setting—required deriving a closed-form expression for E(λ,y)∼pθ
[
λy

]
,

which can be difficult in more complex weak supervision models that we will consider.

Spectral & Tensor Decomposition Approaches Another set of approaches have used

spectral techniques: broadly, linear algebraic approaches involving computing the eigen-

vectors of some function of the moments of the observed label matrix Λ. We briefly review

one of these approaches, due to Gosh et. al. [Ghosh et al., 2011]. Here, we consider the

matrix ΛΛT , and consider the expected value of one entry conditioned on the unobserved

~y—in other words, the second moment of Λ with respect to the distribution conditioned on
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~y:

EΛ∼pθ(·|~y)

[(
ΛΛT

)
i, j

]
=

m∑
k=1

EΛ∼pθ(·|~y)

[
λ(i)

k λ
( j)
k

]
Under our simple model, we have, for i , j:

EΛ∼pθ(·|~y)

[
λ(i)

k λ
( j)
k

]
= y(i)y( j)

(
α2

k + (1 − αk)2 − 2αk(1 − αk)
)

= y(i)y( j) (2αk − 1)2

where again we write α j = pθ(λ j = y). Thus, we have:

EΛ∼pθ(·|~y)

[(
ΛΛT

)
i, j

]
=


(∑m

k=1 (2αk − 1)2
)

y(i)y( j) i , j

m i = j

We can alternatively express this in matrix form; letting κ =
∑m

k=1(2αk − 1)2:

E
[
ΛΛT

]
= κ~y~yT + (m − κ)I

We see that ~y is an eigenvector with eigenvalue κ ||yv||2 + (m − κ), and that the remaining

eigenvalues are (m − κ); thus ~y is the top eigenvector. Thus, Gosh et. al. propose to take

the sign of the top eigenvector of ΛΛT as an estimate of ~y (from which we can of course

compute θ). A remaining issue in this (and other similar) approaches is resolving a final,

fundamental symmetry: note that if ~y is an eigenvector, then so is −~y. Gosh et. al. propose

using a single “trusted” non-adversarial label source to resolve this ambiguity.

Other spectral approaches look at the matrix ΛT Λ instead [Dalvi et al., 2013], combine

spectral and EM approaches [Zhang et al., 2016b], and a range of other approaches. We

note that while spectral approaches like the one above are appealing from a simplicity

and theoretical analysis perspective, they can be difficult to extend to more complex label

models.

Another line of related methods, generally referred to as tensor decomposition or fac-

torization approaches, handle this type of latent variable problem by considering the equiv-

alent of a spectral decomposition of higher-order tensors that are again usually formed as

some function of the higher-order moments of the observed variables, e.g. Λ. For a good
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overview see [Anandkumar et al., 2014].

Further Modeling Challenges In this section, we looked at several traditional approaches

to modeling weak supervision in the absence of ground truth labels. More broadly, how-

ever, we can view modeling weak supervision as consisting of three core challenges:

1. Modeling accuracies: Estimating the accuracies (or more specifically, the condi-

tional probabilities pθ(λ|y)) of the weak supervision sources.

2. Modeling correlations: Estimating and handling conditional correlations between

the weak supervision sources, i.e. sources that are not conditionally-independent as

in this section.

3. Modeling expertise: Estimating the data point-conditional accuracies of the weak

supervision sources, i.e. modeling the fact that they may be more or less accurate for

different data points.

In the prior approaches we considered above, we only treated a simple version of (1); and

in general, most prior methods do not handle more complex label models that address

challenges which uniquely arise in the programmatic labeling setting we consider, such

as (2) handling correlations between weak supervision sources. In this thesis we consider

weak supervision modeling approaches which can handle this broader class of challenges,

in particular focusing on (1) and (2) in settings more general than the simple (but often-

considered) conditionally-independent model used in this section.

2.4 Data Management Systems for Training Data

The broader—and central—focus of this thesis beyond algorithmic approaches for mod-

eling weak supervision is building end-to-end data management systems for training data.

We cover the main training data management system proposed in this thesis, Snorkel3, in

detail in Chapter 4. Here, we provide a very brief overview of other data management

efforts around or related to training data.

3snorkel.org

snorkel.org
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Crowdsourcing As reviewed in Section 2.3, the area of crowdsourcing—i.e. soliciting

labels from low-cost and potentially unreliable on-demand workers—is one that has been

traditionally studied from an algorithmic and theoretical perspective. However, a wide

body of work has been done building and studying end-to-end crowdsourcing management

systems, which handle all aspects ranging from data management and modeling to crowd

worker interfaces, communication, and incentives. A full survey of this literature is beyond

the scope of this thesis; for good high level overviews see [Yuen et al., 2011; Doan et al.,

2011]. Broadly, the work of this thesis naturally subsumes some parts of these systems—in

particular, the modeling of different crowd worker accuracies, and management of crowd

label lineage—while being orthogonal to other aspects of this body of work, such as the

workflow, incentive, and interface management of large crowd worker fleets.

Data Integration & Cleaning Two traditional problems in data management that are

closely related to the assembly and maintenance of training datasets are data integration

and data cleaning. In data integration, the traditional task definition is to integrate data from

multiple different sources, and is often decomposed into sub-tasks such as data extraction,

e.g. from unstructured raw input data; schema alignment; entity linkage; and data fusion,

or the resolution of conflicts between data sources, which is often very related to the weak

supervision modeling approaches in the previous section [Rekatsinas et al., 2017b; Zhao

et al., 2012; Pochampally et al., 2014; Li et al., 2015]. For a good survey of traditional data

integration techniques and systems, see [Dong and Srivastava, 2015]. Recently, there has

been renewed interest in how traditional data integration techniques can both be used for

machine learning, and in turn use machine learning; for a good survey see [Rekatsinas and

Xin, 2018].

Data cleaning is the task of detecting and removing or correcting incorrect data records,

traditionally approached in the database community from the perspective of identifying

tuples that logically conflict with the pre-specified constraints and schema of a database

[Cong et al., 2007; Papotti et al., 2013]. Recently, new techniques that leverage statistical

signals of the data as well have been proposed [Rekatsinas et al., 2017a]. The broader

process of preparing, remapping, and potentially featurizing data—including for use as

training data in machine learning—has also received considerable attention from the data
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management community, often under the name of data wrangling [Kandel et al., 2011].

Broadly, this thesis proposes and considers a new type of data management system for

programmatically building, modeling, and managing training datasets for machine learn-

ing (Chapter 4). However, this work clearly relates to and builds on the traditions and

techniques of traditional data management tasks like integration, cleaning, and wrangling.

Data Management in ML Frameworks We note briefly that while a range of machine

learning frameworks [Abadi et al., 2016; Paszke, 2017] and related work address various

challenges around managing training data for supervised machine learning, they nearly

universally assume that this data has already been labeled, e.g. by hand. This starting

point of large labeled training sets as served as the bedrock for much of machine learning’s

meteoric progress over the last several years, but remains a quandary of ad-hoc and heavily

manual efforts in real practice. This is the machine learning systems and data management

gap that we centrally address in this thesis.



Chapter 3

Data Programming

In this chapter we introduce data programming, a new paradigm in which users write la-

beling functions to programmatically label training data, rather than labeling it by hand.

These labeling functions serve as a simple abstraction for various forms of heuristic or

weak supervision, but may be inaccurate, correlated with each other, and conflicting in

their outputs. In data programming, we automatically estimate their accuracies and corre-

lations in order to reweight and combine their outputs into a clean, confidence-weighted set

of training labels.

In this chapter we introduce the basic abstraction of a labeling function and describe two

novel approaches for modeling and estimating their accuracies and correlations along with

accompanying theoretical results. We show that using these approaches, we can recover

in a theoretically consistent way not just the accuracies of noisy labeling sources, as prior

approaches have studied, but the correlations between programmatic labeling sources, and

thereby subsume a wide range of prior ad hoc or heuristic weak supervision techniques.

In Chapter 4 we then present an end-to-end system for machine learning based around

data programming, Snorkel, along with empirical results from applying data programming

and Snorkel to various real-world problems, providing validation for the core thesis that

enabling users to programmatically build, manage, and model training datasets can be a

productive and accessible way to build machine learning applications.

28
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Motivation Many of the major machine learning breakthroughs of the last decade have

been catalyzed by the release of a new labeled training dataset.1 Supervised learning ap-

proaches that use such datasets have increasingly become key building blocks of applica-

tions throughout science and industry. This trend has also been fueled by the recent em-

pirical success of automated feature generation approaches, notably deep learning methods

such as long short term memory (LSTM) networks [Hochreiter and Schmidhuber, 1997],

which ameliorate the burden of feature engineering given large enough labeled training

sets. For many real-world applications, however, large hand-labeled training sets do not

exist, and are prohibitively expensive to create due to requirements that labelers be experts

in the application domain. Furthermore, applications’ needs often change, necessitating

new or modified training sets.

Data Programming To help reduce the cost of training set creation, in this section we

describe data programming, a paradigm for the programmatic creation of training datasets.

Data programming extends the idea of distant supervision, in which an external knowledge

base is mapped onto an input dataset to generate training examples [Mintz et al., 2009], and

serves as a general framework for a broad range of noisier, higher-level labeling strategies,

often referred to as weak supervision (see Chapter 2). In data programming, users provide

a set of heuristic labeling functions, which are user-defined programs that each provide a

label for some subset of the data, and collectively generate a large but noisy training set.

These labeling functions can express a broad range of programmatic or weak supervision

strategies—they can use external knowledge bases (as in distant supervision), model an

individual annotator’s labels (as in crowdsourcing), leverage a combination of domain-

specific patterns and dictionaries, or use external pre-trained models. In Section 3.1, we

outline the basic syntax of labeling functions; we then provide more detail and examples

of labeling functions in Chapter 4, when we describe Snorkel, the system built around the

concepts in data programming.

The core challenge inherent in data programming is that these labeling functions are a

practically advantageous but extremely messy form of supervision. More concretely, they

may have widely varying error rates, may overlap, and may conflict on certain data points.

1
http://www.spacemachine.net/views/2016/3/datasets-over-algorithms

http://www.spacemachine.net/views/2016/3/datasets-over-algorithms
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To address this, we model the labeling functions as a generative process, which lets us

automatically denoise the resulting training set by learning the accuracies of the labeling

functions along with their correlation structure. In turn, we use this model of the training

set to optimize a stochastic version of the loss function of the discriminative model that we

desire to train.

However, it is not at all obvious how we can solve for the parameters of this model—

e.g. the accuracies and correlation weights of the labeling functions—given that we do

not necessarily observe any ground truth labels. We show that we can in fact provably

recover these parameters even in the absence of ground truth, and outline two approaches

for doing so: in Section 3.2, by minimizing the maximum marginal likelihood of the ob-

served labeling function outputs, using stochastic gradient descent and Gibbs sampling;

and in Section 3.3, using a matrix completion-style approach over a specialized form of

the covariance matrix of these labeling function outputs. In each setting, we show theo-

retically that, given certain conditions on the labeling functions, our method achieves the

same asymptotic scaling as supervised learning methods, but that our scaling depends on

the amount of unlabeled data—using only a fixed number of labeling functions, which is

small relative to the training set size.

Data programming is in part motivated by the challenges that users faced when ap-

plying prior programmatic supervision approaches, and is intended to be a new software

engineering paradigm for the creation and management of training sets. For example, con-

sider the scenario when two labeling functions of differing quality and scope overlap and

possibly conflict on certain training examples; in prior approaches the user would have to

decide which one to use, or how to somehow integrate the signal from both. In data pro-

gramming, we accomplish this automatically by learning a model of the training set that

includes both labeling functions. Additionally, users are often aware of, or able to induce,

dependencies between their labeling functions. In data programming, users can provide a

dependency graph to indicate, for example, that two labeling functions are similar, or that

one “fixes” or “reinforces” another. We describe cases in which we can learn the strength

of these dependencies, and for which our generalization is again asymptotically identical

to the supervised case.

One further motivation for our method is driven by the observation that users often
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struggle with selecting features for their models, which is a traditional development bot-

tleneck given fixed-size training sets. However, feedback from users suggests that writing

labeling functions in the framework of data programming may be easier (see Chapter 4

for further detail). While the impact of a feature on end performance is dependent on

the training set and on statistical characteristics of the model, a labeling function has a

simple and intuitive optimality criterion: that it labels data correctly. Motivated by this,

we explore whether we can flip the traditional machine learning development process on

its head, having users instead focus on generating training sets large enough to support

automatically-generated features.

Outline of Chapter In this chapter we describe data programming, a new paradigm

for the programmatic labeling, modeling, and integration of training datasets for machine

learning:

• In Section 3.1 we describe the basic idea and syntax of a labeling function, and the

basic model we use to model their differing qualities and correlations in order to

ultimately reweight and combine their outputs into clean training labels.

• In Section 3.2 we describe an approach to learning this model without ground truth

labels, by maximizing the marginal likelihood of the observed outputs with stochastic

gradient descent and Gibbs sampling.

• In Section 3.3, we describe an alternative approach using a matrix completion-style

objective.

• In Section 3.4 we briefly describe methods to learn the structure of labeling function

correlations and more complex variants of the model.

• In Section 3.5 we outline related work on modeling weak supervision without ground

truth labels.

In Chapter 4, we then present an end-to-end system for machine learning built around the

core paradigm of data programming, Snorkel, along with further empirical results from

applying data programming and Snorkel to various real-world problems.
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def lf_1(x):
return heuristic(x)

def lf_2(x):
return classifier(x)

def lf_3(x):
return re.find(p, x)
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Figure 3.1: In data programming, rather than labeling training data by hand, users write
labeling functions, which programmatically label data points or abstain. These labeling
functions will have different unknown accuracies and correlations; we model and combines
their outputs using a generative label model, and then use the resulting probabilistic labels
to train an end discriminative model.

3.1 A Syntax and Model for Weak Supervision

In many applications, we would like to use machine learning, but we face the following

challenges: (i) hand-labeled training data is not available, and is prohibitively expensive

to obtain in sufficient quantities as it requires expensive domain experts; (ii) related ex-

ternal knowledge bases are either unavailable or insufficiently specific, precluding a tra-

ditional distant supervision or co-training approach; (iii) application specifications are in

flux, changing the model we ultimately wish to learn.

In such a setting, we would like a simple, scalable and adaptable approach for supervis-

ing a model applicable to our problem. More specifically, in a more theoretical phrasing:

we would ideally like our approach to achieve ε expected loss with high probability, given

O(1) inputs of some sort from a domain-expert user, rather than the traditional Õ(ε−2) hand-

labeled training examples required by most supervised methods (where Õ notation hides

logarithmic factors). To this end, we propose data programming, a paradigm for the pro-

grammatic creation of training sets, which enables domain-experts to more rapidly train

machine learning systems and has the potential for this type of scaling of expected loss. In

data programming, rather than manually labeling each example, users instead describe the

processes by which these points could be labeled by providing a set of heuristic rules, or

other programmatic labelers, called labeling functions.

The overall goal of this approach is to label training data for a final discriminative

model we are aiming to train (Figure 3.1). That is, the labeling functions do not need

to be executable at test time, nor do they need to be comprehensive in what they label;
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def l ambda 1 ( x ) :
re turn 1 i f ( x . gene , x . pheno ) in KNOWN RELATIONS 1 e l s e None

def l ambda 2 ( x ) :
re turn (*@−@*)1 i f r e . match ( r ’ . * n o t c a u s e . * ’ , x . t e x t b e t w e e n ) e l s e None

def l ambda 3 ( x ) :
re turn 1 i f r e . match ( r ’ . * a s s o c i a t e d . * ’ , x . t e x t b e t w e e n )

and ( x . gene , x . pheno ) in KNOWN RELATIONS 2 e l s e None

(a) An example set of three labeling functions written by a user,
with None representing an abstention.

y

λ1 λ2 λ3

(b) The generative model of
a training set defined by
the user input (unary factors
omitted).

Figure 3.2: An example genomics application in which our goal is to extract mentions of
gene-disease relations (roughly, “Gene A causes disease B”) from the scientific literature.

our goal is simply to use their output labels—re-weighted and combined by the generative

modeling approach in data programming, to be described—to train a model that can learn

to generalize beyond their labels (see Chapter 4 for further detail here).

3.1.1 Labeling Functions

Formally, given input data points x ∈ X, and output labels y ∈ Y, a labeling function

λ j : X 7→ Y ∪ {∅} is a user-defined function that encodes some domain heuristic, which

either provides a label, or abstains to provide one (denoted by ∅), for x ∈ X. As part of

a data programming specification, a user provides some m labeling functions, which we

denote in vectorized form as λ : X 7→ (Y ∪ {∅})m. In this section, we will consider the

binary classification case, where Y = {−1, 1}, for simplicity.

Example 3.1.1. To gain intuition about labeling functions, we describe a simple text rela-

tion extraction example. In Figure 3.2, we consider the task of classifying co-occurring

gene and disease mentions as either expressing a causal relation or not. For example, given

the sentence “Gene A causes disease B”, the object x = (A, B) has true class y = 1, meaning

it is indeed a relation we wish to extract into our knowledge base. To construct a training

set, the user writes three labeling functions (Figure 3.2a). In λ1, an external structured

knowledge base is used to label a few objects with relatively high accuracy, and is equiv-

alent to a traditional distant supervision rule (see Chapter 2). λ2 uses a purely heuristic

approach to label a much larger number of examples with lower accuracy. Finally, λ3 is a
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“hybrid” labeling function, which leverages both an external knowledge base and a heuris-

tic filter.

A labeling function need not have perfect accuracy or recall; rather, it represents a pat-

tern that the user wishes to impart to their model and that is easier to encode as a labeling

function than as a set of hand-labeled examples. As illustrated in Ex. 3.1.1, labeling func-

tion can be based on external knowledge bases, libraries or ontologies, could be purely a

heuristic pattern, or some hybrid of these types; see Chapter 4 for further detail and exam-

ples. The use of labeling functions is also strictly more general than manual annotations,

as a manual annotation can always be directly encoded by a labeling function. Importantly,

labeling functions can overlap, conflict, and even have dependencies which users can pro-

vide as part of the data programming specification, or learn through various automated

approaches (Section 3.4); our approach provides a simple framework for these inputs.

3.1.2 Generative Label Models

We now outline three versions of the generative label model that models the qualities and

correlations of the labeling functions: (i) a simple model where we consider modeling

binary labeling functions as conditionally independent; (ii) an extended model where we

consider modeling binary labeling functions with different types of pairwise dependencies;

(iii) and a more general model of k-ary labeling functions with arbitrary pairwise correla-

tions.

Conditionally-Independent, Binary, and Class-Symmetric Model We first describe a

simple model in which (i) the labeling functions label independently, given the true label

class—in other words, we model them as being conditionally independent, λi ⊥ λ j,i|y,

or equivalently making uncorrelated errors; (ii) the labeling functions abstain uniformly;

and (iii) the labeling functions have the same accuracy regardless of the true underlying

class. Under this model, each labeling function λ j has some probability β j = P(λ j , ∅)

of labeling an object and then some class-symmetric probability α j = P(λ j = y|λ j , ∅) of

labeling the object correctly; for simplicity, in this model we also assume a uniform prior,

i.e. P(y = 1) = P(y = −1) = 1/2. Let the label model parameters be θ = [α; β], then this
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y

λ1 λ2s

l ambda 1 ( x ) = f ( x . word )
lambda 2 ( x ) = f ( x . lemma )

C o r r e l a t i o n ( lambda 1 , lambda 2 )

y

λ2
λ1 λ3

f r

l ambda 1 ( x ) = f ( ’ . * c a u s e . * ’ )
lambda 2 ( x ) = f ( ’ . * n o t c a u s e . * ’ )
lambda 3 ( x ) = f ( ’ . * c a u s e . * ’ )

F i x e s ( lambda 1 , lambda 2 )
R e i n f o r c e s ( lambda 1 , lambda 3 )

y

λ1 λ2e

l ambda 1 ( x ) = x in DISEASES A
lambda 2 ( x ) = x in DISEASES B

E x c l u d e s ( lambda 1 , lambda 2 )

Figure 3.3: Examples of labeling function dependency predicates.

label model has distribution, for a single data point x with true (unobserved) label y:

pθ(λ, y) =
1
2

Z−1
θ

m∏
j=1

(
β jα j1

{
λ j = y

}
+ β j(1 − α j)1

{
λ j = −y

}
+ (1 − β j)1

{
λ j = ∅

})
, (3.1)

where λ ∈ {−1, 1, ∅}m contains the labels output by the labeling functions for data point

x and Zθ is the normalizing partition function. If we allow the parameters α ∈ Rm and

β ∈ Rm to vary, (3.1) specifies a family of generative label models, similar (but slightly more

complex, due to the abstains, than) the simple conditionally-independent weak supervision

model introduced in Section 2.3.

Pairwise-Dependent Binary Model Next we describe a model of binary labeling func-

tions where assumptions (i-iii) are relaxed, in other words we consider that labeling func-

tions may have dependencies, and may have class-specific parameters, α( j,λ,y) = P(λ j =

λ|y), including for abstains (i.e. modeling non-uniform abstentions). This first relaxation is

motivated by the fact that users often write labeling functions that have clear dependencies

among them (Chapter 3). As more labeling functions are added as the system is developed,

an implicit dependency structure arises naturally amongst the labeling functions: model-

ing these dependencies can in some cases significantly improve accuracy, and/or mitigate

error modes, such as e.g. double-counting the ‘votes’ of highly-correlated labeling func-

tions. We describe a method by which the user can specify this dependency knowledge

as a dependency graph, and show how the system can use it to produce better parameter

estimates.
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To support the injection of dependency information into the model, we augment the data

programming specification with a label function dependency graph, Gλ ⊂ D× {1, . . . ,m} ×

{1, . . . ,m}, which is an undirected graph over the labeling functions, each of the edges of

which is associated with a dependency type from a class of dependencies D appropriate to

the domain.

In some settings we have utilized four commonly-occurring types of dependencies as

illustrative examples: correlation, fixing, reinforcing, and exclusive (see Figure 3.3). For

example, suppose that we have two functions λ1 and λ2, and λ2 typically labels only when

(i) λ1 also labels, (ii) λ1 and λ2 disagree in their labeling, and (iii) λ2 is actually correct.

We call this a fixing dependency, since λ2 fixes mistakes made by λ1. If λ1 and λ2 were

to typically agree rather than disagree, this would be a reinforcing dependency, since λ2

reinforces the label output by λ1.

The presence of dependency information means that we can no longer model our labels

using the simple Bayesian network in (3.1). Instead, we model our distribution as a factor

graph. This standard technique lets us describe the family of generative distributions in

terms of a known factor function ψ : {−1, 1, ∅}m × {−1, 1} 7→ {−1, 0, 1}M (in which each

entry ψi represents a factor), and an unknown parameter θ ∈ RM as

pθ(λ, y) = Z−1
θ exp(θTψ(λ, y)),

where Zθ is the partition function which ensures that pθ is a distribution. Next, we will

describe how we define ψ using information from the dependency graph.

To construct f , we will start with some base factors, which we inherit from (3.1), and

then augment them with additional factors representing dependencies. To simplify, we will

let ∅ = 0. Then, for all j ∈ {1, . . . ,m}, we let

ψ0(λ, y) = y, ψ j(λ, y) = λ jy, ψm+ j(λ, y) = λ j, ψ2m+ j(λ, y) = λ2
jy, ψ3m+ j(λ, y) = λ2

j .

These factors alone are sufficient to describe any distribution for which the labels are mu-

tually independent, given the class: this includes the independent family in (3.1).

We now proceed by adding additional factors to ψ, which model the dependencies en-

coded in Gλ. For each dependency edge (d, i, j), we add one or more factors to ψ as follows.
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For a near-duplicate dependency on (i, j), we add a single factor ψι(λ, y) = 1
{
λi = λ j

}
,

which increases our prior probability that the labels will agree. For a fixing dependency,

we add two factors, ψι(λ, y) = 1
{
λi = ∅ ∧ λ j , ∅

}
and ψι+1(λ, y) = 1

{
λi = −y ∧ λ j = y

}
,

which encode the idea that λ j labels only when λi does, and that λ j fixes errors made

by λi. The factors for a reinforcing dependency are the same, except that ψι+1(λ, y) =

1
{
λi = y ∧ λ j = y

}
. Finally, for an exclusive dependency, we have a single factor ψι(λ, y) =

−1
{
λi , ∅ ∧ λ j , ∅

}
.

The theoretical analysis in Section 3.2.2 covers this full set of arbitrary dependency

types. However, in the rest of this dissertation, we will focus on basic pairwise correlation

dependencies for simplicity of exposition, in which case Gλ ⊂ D × {1, . . . ,m} × {1, . . . ,m}.

Pairwise-Dependent k-ary Model Finally, in Section 3.3 we will consider the more

general version of the Pairwise-Dependent Binary Model where we handle k-ary (cate-

gorical) labeling functions—i.e. labeling functions that have outputs in some discrete set

Y = {1, ..., k}.

3.1.3 Training an End Discriminative Model

The ultimate goal of the label models outlined above, and data programming overall, is to

generate training labels for some end discriminative model that can generalize beyond the

information expressed in the labeling functions. More specifically, the reason for training

this final model—rather than e.g. using the label model’s predicted labels as the final

outputs—is to leverage modern machine learning tools to generalize to new features, and

thus either (a) learn to cover data points not labeled by the provided labeling functions,

and/or (b) produce a model defined over features different than those the labeling functions

apply to. For further details, see Chapter 4.

To do this, we start by using the estimated label model parameters θ to output a final pre-

dicted, probabilistic training label ỹ = pθ(y|λ) (note that this is equivalent to re-weighting

and combining the individual labeling function labels). Given the parameters θ, performing

this inference is straightforward; see Sections 3.2.1 and 3.3.2 for further details.

We then train a discriminative model hw on our probabilistic labels ỹ by minimizing a
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noise-aware variant of the loss l(hw(x(i)), y(i)), i.e., the expected loss with respect to ỹ:

ŵ = argminw

n∑
i=1

Ey∼pθ(·|λ(i))

[
l(hw(x(i)), y)

]
We now return to the core data programming challenge of learning the label model pa-

rameters θ in the absence of ground truth labels, using two different approaches in Sections

3.2 and 3.3 respectively.

3.2 Maximum Marginal Likelihood Approach

The core technical challenge introduced by the generative label models defined in the pre-

vious section is that of how to learn their parameters—e.g., the labeling function accuracy

and correlation parameters—without observing any ground truth labels. In this section, we

outline an approach based on using stochastic gradient descent and Gibbs sampling to max-

imize the marginal likelihood, and provide a theoretical analysis showing conditions under

which it converges, and in fact leads to end-to-end sample complexity (i.e. the number of

samples labeled by the labeling functions and label model and then used to train a final

end discriminative model) that has the same asymptotic scaling as in supervised learning

methods, except with respect to number of unlabeled data points.

3.2.1 Learning the Label Model

Our goal will be to learn which parameters θ are most consistent with our observations—

our unlabeled training set—using maximum likelihood estimation. To do this for a partic-

ular training set XU = {x(1), . . . , x(n)}, we will maximize the log marginal likelihood of the
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outputs of the labeling functions applied to XU , the label matrix Λ ∈ Rn×m:

θ̂ = argmaxθ LΛ(θ)

= argmaxθ log pθ(Λ)

= argmaxθ
n∑

i=1

log pθ(λ(i))

= argmaxθ
n∑

i=1

log

∑
y′∈Y

pθ(λ(i), y′)

 (3.2)

In other words, we are maximizing the probability that the observed labels produced on

our training examples occur under the generative model in (3.1). We can start by taking the

gradient of LΛ with respect to the unknown parameters θ.

∇θLΛ(θ) =

n∑
i=1

∇θ log

∑
y′∈Y

pθ(λ(i), y′)


=

n∑
i=1

∑
y′∈Y

pθ(λ(i), y′)


−1 ∑

y′∈Y

∇θpθ(λ(i), y′)


=

n∑
i=1

∑
y′∈Y

pθ(λ(i))−1∇θpθ(λ(i), y′)

=

n∑
i=1

∑
y′∈Y

pθ(λ(i))−1
(
−Z−2

θ exp(θTψ(λ(i), y′)) (∇θZθ) + Z−1
θ exp(θTψ(λ(i), y′))ψ(λ(i), y′)

)
=

n∑
i=1

∑
y′∈Y

pθ(λ(i))−1 pθ(λ(i), y′)
(
ψ(λ(i), y′) − Z−1

θ (∇θZθ)
)

=

n∑
i=1

∑
y′∈Y

pθ(y′|λ(i))

ψ(λ(i), y′) −
∑
λ′,y′′

Z−1
θ exp(θTψ(λ′, y′′))ψ(λ′, y′′)


=

n∑
i=1

∑
y′∈Y

pθ(y′|λ(i))ψ(λ(i), y′) −
∑
λ′,y′′

pθ(λ′, y′′)ψ(λ′, y′′)


=

n∑
i=1

(
Ey′∼pθ(·|λ(i))

[
ψ(λ(i), y′)

]
− E(λ′,y′)∼pθ

[
ψ(λ′, y′)

])
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We see that the gradient is just the difference between the expected sufficient statistics and

expected conditional statistics given the observed labels Λ. Importantly, we can compute

these two quantities using an approximate inference algorithm, for example Gibbs sam-

pling. Thus, to estimate the parameters θ, in practice we can interleave approximate infer-

ence (e.g. Gibbs sampling) and stochastic gradient descent steps, leverage the frameworks

for doing both of these efficiently. For further details see Appendix B.

3.2.2 Theoretical Analysis

For the theoretical analysis of the maximum marginal likelihood approach, we focus on

a binary classification task in which we have a distribution D over object and class pairs

(x, y) ∈ X × {−1, 1}, and we are concerned with minimizing the logistic loss under a linear

model given some features,

R(w) = E(x,y)∼D

[
log(1 + exp(−wTφ(x)y))

]
,

where without loss of generality, we assume that ||φ(x)|| ≤ 1. Given that our parameter

learning phase has successfully found some parameters θ̂ that accurately describe the train-

ing set, we can then proceed to estimate the parameter w which minimizes the expected risk

of a linear model over our feature mapping φ, given θ̂. To do so, we define the noise-aware

empirical risk R̂θ̂ with regularization parameter ρ, and compute the noise-aware empirical

risk minimizer

ŵ = argminw R̂θ̂(w, XU) = argminw
1
n

n∑
i=1

Ey′∼pθ̂(·|λ(i))

[
log

(
1 + exp(−wTφ(x)y′)

)]
+ ρ ||w||2

(3.3)

This is a logistic regression problem, so it can be solved using stochastic gradient descent

as well.

Conditionally Independent, Binary, and Class-Symmetric Model We will start by an-

alyzing the conditionally independent case. In order to expose the scaling of the expected

loss as the size of the unlabeled dataset changes, we will assume here that 0.3 ≤ β j ≤ 0.5

and 0.8 ≤ α j ≤ 0.9. We note that while these arbitrary constraints can be changed, they are
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roughly consistent with our applied experience, where users tend to write high-accuracy

and high-coverage labeling functions.

We can in fact prove that stochastic gradient descent running on (3.2) and (3.3) is guar-

anteed to produce accurate estimates, under conditions which we describe now. First, the

problem distribution π needs to be accurately modeled by some distribution µ in the family

that we are trying to learn. That is, for some α∗ and β∗, with θ∗ = [α∗; β∗],

∀λ ∈ {−1, 0, 1}m, y ∈ {−1, 1}, pπ∗(λ, y) = pθ∗(λ, y). (3.4)

Second, given an example (x, y) ∼ π∗, the class label y must be independent of the features

φ(x) given the labels λ. That is,

(x, y) ∼ π∗ ⇒ y ⊥ φ(x) | λ. (3.5)

This assumption encodes the idea that the labeling functions, while they may be arbitrarily

dependent on the features, provide sufficient information to accurately identify the class.

Third, we assume that the algorithm used to solve (3.3) has bounded generalization risk

such that for some parameter χ,

Eŵ

[
EXU

[
Rθ̂(ŵ, XU)

]
−min

w
EXU

[
Rθ̂(w, XU)

]]
≤ χ. (3.6)

Under these conditions, we make the following statement about the accuracy of our esti-

mates, which is a simplified version of a theorem that is detailed in Appendix B.

Theorem 1. Suppose that we run data programming, solving the problems in (3.2) and

(3.3) using stochastic gradient descent to produce θ̂ = [α̂; β̂] and ŵ. Suppose further that

our setup satisfies the conditions (3.4), (3.5), and (3.6), and suppose that m ≥ 2000. Then

for any ε > 0, if the number of labeling functions m and the size of the input dataset n = |XU |

are large enough that

n ≥
356
ε2 log

( m
3ε

)
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then our expected parameter error and generalization risk can be bounded by

E
[
||α̂ − α∗||2

]
≤ mε2 E

[∣∣∣∣∣∣β̂ − β∗∣∣∣∣∣∣2] ≤ mε2 E
[
R(ŵ) −min

w
R(w)

]
≤ χ +

ε

27ρ
.

We select m ≥ 2000 to simplify the statement of the theorem and impart a sense for

how ε scales with respect to n. The full theorem with scaling in each parameter (and for

arbitrary m) is presented in Appendix B.

This result establishes that to achieve both expected loss and parameter estimate error

ε, it suffices to have only m = O(1) labeling functions and n = Õ(ε−2) training examples,

which is the same asymptotic scaling exhibited by methods that use labeled data. This

means that data programming achieves the same learning rate as methods that use labeled

data, while requiring asymptotically less work from its users, who need to specify O(1)

labeling functions rather than manually label Õ(ε−2) examples. In contrast, in the crowd-

sourcing setting [Karger et al., 2011], the number of workers m tends to infinity while here

it is constant while the dataset grows. These results provide some explanation of why our

experimental results (e.g. in Chapter 4) suggest that a small number of rules with a large

unlabeled training set can be effective at even complex natural language processing tasks.

Pairwise-Dependent Binary Model We can again solve a maximum likelihood problem

like (3.2) to learn the parameter θ̂. Using the results, we can continue on to find the noise-

aware empirical loss minimizer by solving the problem in (3.3). In order to solve these

problems in the dependent case, we use stochastic gradient descent, using Gibbs sampling

to sample from the distributions used in the gradient update. Under conditions similar to

those in the previous case, we can again provide a bound the accuracy of these results.

We define these conditions now. First, there must be some set Θ ⊂ RM that we know our

parameter lies in. This is analogous to the assumptions on α j and β j in the previous case,

and we can state the following analog of (3.4):

∃θ∗ ∈ Θ s.t. ∀(λ, y) ∈ {−1, 0, 1}m × {−1, 1}, pπ∗(λ, y) = pθ∗(λ, y). (3.7)

Second, for any θ ∈ Θ, it must be possible to accurately learn θ from full (i.e. labeled)

samples of pθ. More specifically, there exists an unbiased estimator θ̂(T ) that is a function
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of some dataset T of independent samples from pθ such that, for some c > 0 and for all

θ ∈ Θ,

Cov
(
θ̂(T )

)
� (2c |T |)−1I. (3.8)

Third, for any two feasible models θ1 and θ2 ∈ Θ,

E(λ1,y1)∼pθ1

[
Var(λ2,y2)∼pθ2

(y2|λ1 = λ2)
]
≤ cM−1. (3.9)

That is, we’ll usually be reasonably sure in our guess for the value of y, even if we guess

using distribution pθ2 while the the labeling functions were actually sampled from (the

possibly totally different) pθ1 . We can now prove the following result about the accuracy of

our estimates.

Theorem 2. Suppose that we run stochastic gradient descent to produce θ̂ and ŵ, and that

our setup satisfies the conditions (3.5)-(3.9). Then for any ε > 0, if the input dataset XU ,

n = |XU |, is large enough that

n ≥
2

c2ε2 log
(
2 ||θ0 − θ

∗||
2

ε

)
,

then our expected parameter error and generalization risk can be bounded by

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ Mε2 E

[
R(ŵ) −min

w
R(w)

]
≤ χ +

cε
2ρ
.

As in the independent case, this shows that we need only n = Õ(ε−2) unlabeled training

examples to achieve error O(ε), which is the same asymptotic scaling as supervised learning

methods. This suggests that while we pay a computational penalty for richer dependency

structures, we are no less statistically efficient. In Appendix B, we provide more details,

including an explicit description of the algorithm and the step size used to achieve this

result.
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KBP (News) Genomics Pharmacogenomics
DM WS Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

HT
ITR 51.15 26.72 35.10 83.76 41.67 55.65 68.16 49.32 57.23
DP 50.52 29.21 37.02 83.90 43.43 57.24 68.36 54.80 60.83

LSTM
ITR 37.68 28.81 32.66 69.07 50.76 58.52 32.35 43.84 37.23
DP 47.47 27.88 35.78 75.48 48.48 58.99 37.63 47.95 42.17

Table 3.1: Precision/Recall/F1 scores using two different weak supervision (WS)
approaches- data programming (DP) and a distant supervision ITR approach, with two
end discriminative models (DM)- one using hand-tuned (HT) features, and an LSTM.

3.2.3 Experiments

We experimentally validate two claims about our approach, data programming, using the

maximum marginal likelihood approach as detailed in this section: first, that it can be an ef-

fective paradigm for building high quality machine learning systems, which we test across

three real-world text relation extraction applications; and second, that it can be used suc-

cessfully in conjunction with automatic feature generation methods, such as LSTM models.

Relation Mention Extraction Tasks In the relation mention extraction task, our objects

are relation mention candidates x = (e1, e2), which are pairs of entity mentions e1, e2 in

unstructured text, and our goal is to learn a model that classifies each candidate as either a

true textual assertion of the relation R(e1, e2) or not. We examine a news application from

the 2014 TAC-KBP Slot Filling challenge2, where we extract relations between real-world

entities from articles; a clinical genomics application, where we extract causal relations be-

tween genetic mutations and phenotypes from the scientific literature; and a pharmacoge-

nomics application where we extract interactions between genes, also from the scientific

literature.

For each application, we or our collaborators originally built a system where a ground

truth training set was programmatically generated by ordering the labeling functions as a

sequence of if-then-return statements, and for each candidate, taking the first label emitted

by this script as the training label. We refer to this as the if-then-return (ITR) approach, and

note that it often required significant domain expert development time to tune (weeks or

2http://www.nist.gov/tac/2014/KBP/

http://www.nist.gov/tac/2014/KBP/
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more). For this set of experiments, we then used the same labeling function sets within the

framework of data programming. In Table 3.1, we see that we achieve consistent improve-

ments: on average by 2.34 points in F1 score, including what would have been a winning

score on the 2014 TAC-KBP challenge [Surdeanu and Ji, 2014].

We observed these performance gains across applications with very different labeling

function sets. We describe the labeling function summary statistics—coverage is the per-

centage of objects that had at least one label, overlap is the percentage of objects with more

than one label, and conflict is the percentage of objects with conflicting labels—and see in

Table 3.2 that even in scenarios where m is small, and conflict and overlap is relatively less

common, we still realize performance gains.

Application # of LFs Coverage Overlap Conflict
F1 Score Improvement
HT LSTM

KBP (News) 40 29.39 1.38 0.15 1.92 3.12
Genomics 146 53.61 26.71 2.05 1.59 0.47
Pharmacogenomics 7 7.70 0.35 0.32 3.60 4.94
Diseases 12 53.32 31.81 0.98 N/A N/A

Table 3.2: Labeling function summary statistics, and relative F1 score improvement over baseline
IRT methods for hand-tuned (HT) and LSTM-generated (LSTM) feature sets. We include labeling
function statistics from the usability study’s disease mention tagging application as well, where
baseline scores were not available.

Automatically-generated Features We additionally compare both hand-tuned and auto-

matically generated features, where the latter are learned via an LSTM recurrent neural net-

work (RNN) [Hochreiter and Schmidhuber, 1997]. Conventional wisdom states that deep

learning methods such as RNNs are prone to overfitting, thus rendering them ineffective

over distantly-supervised training sets. In our experiments, however, we find that training

them with the data programming may be effective, reporting a 9.79 point boost to precision

and a 3.12 point F1 score improvement on the benchmark 2014 TAC-KBP (News) relation

extraction task, over the baseline if-then-return approach. Additionally for comparison, our

approach is a 5.98 point F1 score improvement over a state-of-the-art LSTM approach ap-

plied to the TAC-KBP task which was trained on hand-labeled data [Verga et al., 2015]. For

further experimental validation of the general data programming paradigm, see Chapter 4.
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3.3 Matrix Completion-Style Approach

In this section, we outline an alternative approach to learning the parameters of the label

model using a simple and scalable matrix completion-style algorithm, which we are able to

analyze by applying strong matrix concentration bounds [Tropp, 2015]. This approach is

advantageous in several ways. First, it leads to a more computationally efficient algorithm

that, after an initial matrix multiply and (optionally) matrix inversion—both of which can

be computed quickly using standard linear algebra libraries—it only requires optimizing

(e.g. running SGD) over a M × M, where M is proportional to the number of cliques

of dependent labeling functions, which importantly has no dependence on the number of

unlabeled data points being used, leading to over 100× faster runtimes compared to prior

Gibbs-sampling based approaches [Ratner et al., 2016; Platanios et al., 2017], including

the one in Section 3.2, and enabling simple implementation using libraries like PyTorch.

Second, many dependency structures between weak supervision labeling functions may

lead to non-identifiable models of their accuracies, where a unique solution cannot be re-

covered. We provide a compiler-like check to establish identifiability—i.e. the existence of

a unique set of source accuracies—for arbitrary dependency structures, without resorting

to the standard assumption of non-adversarial labeling functions [Dawid and Skene, 1979],

alerting users to this potential stumbling block that we have observed in practice.

Third, we provide sample complexity bounds that characterize the benefit of adding

additional unlabeled data and the scaling with respect to the user-specified dependency

structure. While previous approaches, such as the one in Section 3.2, required thousands

of labeling functions to give non-vacuous bounds, we capture regimes with small numbers

of labeling functions, better reflecting the real-world uses of weak supervision we have

observed.

Finally, this approach can be extended to the multi-task setting, which we cover in

Chapter 5.
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3.3.1 Learning the Label Model: Simple Example

In order to establish the basic intuition behind approaching the label model parameter es-

timation problem as a matrix-completion style one, we will start by illustrating a matrix-

completion style solution to the simple conditionally-independent, binary, class-symmetric

model. In the next subsection, we will then show how it can be extended to more complex

label models, e.g. those with arbitrary correlations between the weak supervision sources.

We start here by considering what we refer to here as the empirical overlaps matrix,

Ô = ΛT Λ, where we see that for some i , j:

1
n

Ôi, j =
1
n

n∑
k=1

λ(k)
i λ

(k)
j = Ê

[
λiλ j

]
We therefore consider Ô to be the noisy empirical version of a true overlaps matrix O with

entries, for i , j:

Oi, j = E(λ,y)∼pθ

[
λiλ j

]
= E(λ,y)∼pθ

[
1

{
λi = λ j

}
− 1

{
λi , λ j

}]
= pθ(λi = λ j) − pθ(λi , λ j)

= αiα j + (1 − αi)(1 − α j) − αi(1 − α j) − (1 − αi)α j

= (2αi − 1)(2α j − 1)

where as in Section 2.3, we define α j = pθ(λ j = 1|y = 1). Letting µ be the vector such that

µ j = 2α j − 1, we see that:

O = µµT + diag(1 − µ ◦ µ)

We see that even with the simple model we consider, this form does not admit the same sim-

ple spectral decomposition as in the spectral approach example of Section 2.3. However,

we can simply approach this as a matrix completion or approximation-style optimization
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problem:

µ̂ = argminµ
∣∣∣∣∣∣Ô − µµT

∣∣∣∣∣∣
i, j

where we define ||A||i, j as the Frobenius norm of matrix A with entries on the diagonal

masked, and where we can directly obtain θ̂ from µ̂.

The challenge with the above formulation is that there is no obvious way to handle

the more complex label models presented earlier–for instance any label models with cor-

relations between the labeling functions. Next, we extend the general approach presented

above to these more complex settings, and provide theoretical and empirical validation.

3.3.2 Learning the Label Model: Complete Form

In this subsection, we start by considering the Pairwise-Dependent Binary label model, and

defining the inputs and syntax of this label model. We outline our approach for learning the

parameters of this model using a matrix-completion style approach; establish an approach

for checking the identifiability of a model; and finally, detail the algorithmic implementa-

tion of our approach. We then conclude by describing how this approach can handle the

more general Pairwise-Dependent k-ary label model as well.

Model Definition

Let x ∈ X be a data point and y ∈ Y be the true label, where we consider the binary setting

to start, Y = {−1, 1}, and where (x, y) is drawn i.i.d. from a distribution D. In our setting,

rather than observing the true label y, we have access to m labeling functions which, when

applied to x, output labels λ j ∈ Y ∪ {∅}, where as before ∅ denotes a special abstain value.

The user also provides the conditional dependency structure of the labeling functions

as a graph Gλ = (V, E), where V = {y, λ1, λ2, . . . , λm} (Figure 3.4). Specifically, if (λi, λ j)

is not an edge in Gλ, this means that λi is independent of λ j conditioned on y and the other

labeling function outputs. Note that if Gλ is unknown, it can be estimated using statisti-

cal techniques, covered in Section 3.4. Importantly, we do not know anything about the

strengths of the correlations in Gλ, or the labeling functions’ accuracies; these are captured
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y

λ1 λ2 λ3 λ4

y, λ1, λ2

y, λ3 y, λ4

yy

Figure 3.4: An example of a labeling function dependency graph Gλ (left) and its junction
tree representation (right). Here, the output of labeling functions 1 and 2 are modeled as
dependent conditioned on y. This results in a junction tree with singleton separator sets, y.
Here, the observable cliques are O = {λ1, λ2, λ3, λ4, {λ1, λ2}} ⊂ C.

by the parameters of the label model we aim to estimate now.

Our overall goal is to apply the set of labeling functions λ to an unlabeled dataset XU

consisting of n data points, then use the resulting weakly-labeled training set to supervise

the end discriminative model hw : X 7→ Y. This weakly-labeled training set will contain

overlapping and conflicting labels, from labeling functions with unknown accuracies and

correlations. To handle this, we will learn a label model Pθ(y|λ), parameterized by a vector

of source correlations and accuracies θ, which for each data point x takes as input the noisy

labels λ = {λ1, . . . , λm} and outputs a single probabilistic label vector ỹ. Succinctly, given a

user-provided tuple (XU , λ,Gλ), our key technical challenge is recovering the parameters θ

without access to ground truth labels y.

To learn the label model, we introduce sufficient statistics over the random variables in

Gλ. Let C be the set of cliques in Gλ, and define an indicator random variable for the event

of a clique C ∈ C of labeling functions taking on a set of values yC:

ψ(C, yC) = 1 {∩i∈CVi = (yC)i} ,

where (yC)i ∈ Y ∪ {∅}. We define ψ(C) ∈ {0, 1}|Y|
|C|

as the vector of indicator random

variables for all combinations of all but one of the labels emitted by each variable in clique

C—thereby defining a minimal set of statistics—and define ψ(C) accordingly for any set of

cliques C ⊆ C. Then θ = E
[
ψ(C)

]
is the vector of sufficient statistics for the label model,

which we want to learn.
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Singleton Separator Sets Condition We now proceed with one simplifying condition:

we consider the setting where Gλ is triangulated and has a junction tree representation with

singleton separator sets. Intuitively, this corresponds to models where weak supervision

labeling functions are correlated in fully-connected clusters, corresponding to real-world

settings in which labeling functions are correlated due to shared data sources, code, or

heuristics. Note, however, that we can always either (i) add edges to Gλ such that this is

the case, or (ii) extend our approach to many settings where Gλ does not have singleton

separator sets, as covered at the end of this section.

A Matrix Completion-Style Approach

The chief technical difficulty in our problem is that we do not observe y. We overcome this

by analyzing the covariance matrix of an observable subset of the cliques in Gλ, leading to a

matrix completion-style approach for recovering θ. We leverage two pieces of information:

1. The observability of part of Cov (ψ(C)), corresponding to the agreements and dis-

agreements between labeling functions;

2. An extension of a result from [Loh and Wainwright, 2013] which states that the

inverse covariance matrix Cov (ψ(C))−1 is structured according to Gλ, i.e., if there is

no edge between λi and λ j in Gλ, then the corresponding entries are 0.

Since Gλ is triangulated, it admits a junction tree representation [Koller et al., 2009], which

has maximal cliques (nodes) C̄ and separator sets S. Note that we follow the convention

that S includes the full powerset of separator set cliques, i.e. all subset cliques of separator

set cliques are also included in S. Thus, under the singleton separator set condition outlined

above, S = {{y}}; note that in general we will write single-element sets without braces when

their type is obvious from context, so we have S = {y}.

We start by considering two disjoint subsets of C̄: the set of observable cliques, O ⊆

C̄—i.e., those cliques not containing y—and the separator set cliques of the junction tree,

S ⊆ C̄ (which in our singleton separator set setting is {y}, but in general will always include
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y and thus be unobservable)3. In this singleton separator set setting, we then have:

O = {C | y < C,C ∈ C̄} S = {y}.

where ψ(O) and ψ(y) are the corresponding vectors of minimal indicator variables. We

define corresponding dimensions dO and dS, which in our binary setting are:

dO =
∑
C∈O

(|Y ∪ {∅}| − 1)|C| =
∑
C∈O

2|C| dS = |Y| − 1 = 1.

where note that we our sufficient statistics track all but one of the values that each variable

can take on, so as to lead to a minimal set of sufficient statistics. We now decompose the

generalized covariance matrix and its inverse as:

Cov (ψ(O ∪ S)) ≡ Σ =

 ΣO ΣOS

ΣT
OS ΣS

 Σ−1 = K =

 KO KOS

KT
OS KS

 , (3.10)

This is similar to the form used in [Chandrasekaran et al., 2010], but with several important

differences: we consider discrete (rather than Gaussian) random variables and have addi-

tional knowledge of the graph structure. Here, ΣO = Cov (ψ(O)) ∈ RdO×dO is the observable

block of the generalized covariance matrix Σ, and ΣOS = Cov (ψ(O), ψ(S)) ∈ RdO×1 is

the unobserved vector which is a function of θ, the parameters (corresponding to labeling

function and labeling function clique accuracies) we wish to recover. Finally, ΣS is a scalar

function of the class balance P(y), which we assume is either known, or has been estimated

according to the unsupervised approach we detail at the end of this section. Thus, ΣO and

ΣS are known, and our goal is to recover the vector ΣOS, from which we can recover θ.

Applying the block matrix inversion lemma, we have:

KO = Σ−1
O + cΣ−1

O ΣOSΣ
T
OSΣ

−1
O , (3.11)

3Note that from here on, we use O in this way, which is distinct from its usage in Section 3.3.1.
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where c =
(
ΣS − ΣT

OSΣ
−1
O ΣOS

)−1
∈ R+. Let z =

√
cΣ−1

O ΣOS; we can then express (3.11) as:

KO = Σ−1
O + zzT (3.12)

The right hand side of (3.12) consists of an empirically observable term, Σ−1
O , and a rank-

one term, zzT , which we can solve for to directly recover θ. For the left hand side, we apply

an extension of [Loh and Wainwright, 2013] (proof in Appendix C):

Corollary 1. Let U = O ∪ S. Let ΣU be the generalized covariance matrix for U. Then

(Σ−1
U )i, j = 0 whenever i, j correspond to cliques C1,C2 respectively such that C1,C2 are not

subsets of the same maximal clique.

We use this to conclude that KO has graph-structured sparsity, i.e., it has zeros deter-

mined by the structure of dependencies between the labeling functions in Gλ. This suggests

an algorithmic approach of estimating z as a matrix completion-style problem in order to

recover an estimate of θ (Algorithm 1). In more detail: let Ω be the set of indices (i, j)

where (KO)i, j = 0, determined by Gλ, yielding a system of equations,

0 = (Σ−1
O )i, j +

(
zzT

)
i, j

for (i, j) ∈ Ω, (3.13)

which is now a matrix completion-style problem. Define ||A||Ω as the Frobenius norm of A

with entries not in Ω set to zero; then we can rewrite (3.13) as
∣∣∣∣∣∣Σ−1

O + zzT
∣∣∣∣∣∣

Ω
= 0. We solve

this equation to estimate z, and thereby recover ΣOS, from which we can directly recover

the label model parameters θ algebraically.

Checking for Identifiability

A first question is: which dependency structures Gλ lead to unique solutions for θ? This

question presents a stumbling block for users, who might attempt to use non-identifiable

sets of correlated weak supervision labeling functions. We provide a simple, testable con-

dition for identifiability.

We start by defining the inverse dependencies graph, Ginv, such that Ginv contains an

edge between two labeling functions λi, λ j, whenever (λi, λ j) < Gλ; in other words, Ginv
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has an edge for each pair of labeling functions that we model as conditionally independent

given y. Recall then that Ω is the augmented edge set of Ginv, in other words, a pair of

indices (i, j)—corresponding to elements of ψ(C), and therefore to cliques A, B ∈ C—is in

Ω if A, B are not part of the same maximal clique in Gλ (and therefore (KO)i, j = 0).

Then, given a solution z, by definition we have:

−(Σ−1
O )Ω =

(
zzT

)
Ω
, (3.14)

This defines a set of |Ω| equations, which we can encode using a matrix MΩ, where if (i, j)

is the (r − 1)th entry in Ω, then

(MΩ)r,s =

1 s ∈ {i, j},

0 else.
(3.15)

Let li = log(z2
i ) and q(i, j) = log(((Σ−1

O )2
i, j)); then by squaring and taking the log of both sides

of 3.14, we get a system of linear equations:

MΩl = qΩ. (3.16)

Thus, we can uniquely identify the z2
i if the system of linear equations (3.16) has a unique

solution, which means that we can identify z (and therefore µ) up to sign in this case. And,

note that we can always ensure that this system is uniquely solvable by adding labeling

functions that are sufficiently independent.

Given estimates of the z2
i , we can see that the sign of a single zi determines the sign of

all other z j reachable from zi in Ginv. Thus to ensure a unique solution, we only need to

pick a sign for each connected component in Ginv. In the case where the labeling functions

are assumed to be conditionally independent, e.g., [Dalvi et al., 2013; Zhang et al., 2016b;

Dawid and Skene, 1979], it suffices to make the assumption that the labeling functions

are on average non-adversarial; i.e., select the sign of the zi that leads to higher average

accuracies of the labeling functions. Even a single labeling function that is conditionally

independent from all the other labeling functions will cause Ginv to be fully connected,

meaning we can use this symmetry breaking assumption in the majority of cases even
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with correlated labeling functions. Otherwise, a sufficient condition is the standard one of

assuming non-adversarial labeling functions, i.e. that all labeling functions have greater

than random accuracy.

As one more intuitive example of a sufficient condition for a unique solution up to sign:

note that if the inverse augmented edge graph consists of a connected triangle (or any odd-

numbered cycle), e.g. Ω = {(i, j), ( j, k), (i, k)}, then we can solve for the zi up to sign, and

therefore MΩ must be invertible:

z2
i =

(Σ−1
O )i, j(Σ−1

O )i,k

(Σ−1
O ) j,k

,

and so on for z j, zk. Note additionally that if other zi are connected to this triangle, then we

can also solve for them up to sign as well. Therefore, if Ω contains at least one triangle (or

odd-numbered cycle) per connected component, then MΩ is invertible.

Also note that this is all in reference to the inverse dependency graph, which will gen-

erally be dense (assuming the correlation structure between labeling functions is generally

sparse). For example, note that if we have one source λi that is conditionally independent

of all the other labeling functions, then Ω is fully connected, and therefore if there is a

triangle in Ω, then MΩ is invertible.

Pairwise-Dependent Binary Label Model Parameter Estimation

Now that we know when a set of labeling functions with correlation structure Gλ is iden-

tifiable, yielding a unique z, we can estimate the accuracies θ using Algorithm 1, which

consists of the following steps:

1. We begin by checking the identifiability of the problem defined by the model depen-

dency structure Gλ (input as Ω), using the procedure detailed above.

2. Next, we estimate the class balance, P(y), for y ∈ Y (or equivalently, Ê
[
ψ(y)

]
) using

the ClassBalance routine. In many practical settings, P(y) can be estimated from a

small labeled sample, or may be known in advance. However here we consider using

a subset of the labeling functions that are conditionally independent according to Gλ,

λi1 , . . . , λik , to estimate P(y). We note first of all that simply taking the majority vote
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Algorithm 1 Pairwise-Dependent Binary Label Model Parameter Estimation

Input: Observed labels Ê
[
ψ(O)

]
, covariance Σ̂O, and correlation sparsity structure Ω

CheckIdentifiability(Ω) . Preliminary operations
Ê

[
ψ(y)

]
← ClassBalance(Ê

[
ψ(O)

]
, Σ̂O,Ω)

ẑ← argminz

∣∣∣∣∣∣Σ̂−1
O + zzT

∣∣∣∣∣∣
Ω

. Solve the masked matrix completion problem

ĉ← Σ−1
S

(1 + ẑT Σ̂Oẑ) . Recover the estimated label model parameters, θ̂
Σ̂OS ← Σ̂Oẑ/

√
ĉ

θ̂ ← Concat(Σ̂OS + Ê
[
ψ(y)

]
Ê

[
ψ(O)

]
, Σ̂O + Ê

[
ψ(O)

]
Ê

[
ψ(O)

]T , Ê
[
ψ(y)

]
)

return θ̂

of these labeling functions is a biased estimator. Instead, we consider a simplified

version of the matrix completion-based approach taken so far. Denote the vector of

the unary indicator statistics over the conditionally independent subset of labeling

functions as ψ, and let the observed overlaps matrix between labeling functions i and

j be Ai, j = E
[
ψiψ

T
j

]
. Note that due to the conditional independence of λi and λ j, for

any k, l we have:

(Ai, j)k,l = E
[
(ψi)k(ψ j)l

]
= P(λi = yk, λ j = yl)

=
∑
y∈Y

P(λi = yk, λ j = yl|y = y)P(y = y)

=
∑
y∈Y

P(λi = yk|y = y)P(λ j = yl|y = y)P(y = y).

Letting Bi be the |Y ∪ {∅}| × |Y| matrix of conditional probabilities, (Bi) j,k = P(λi =

y j|y = yk), and P be the diagonal matrix such that Pi,i = P(y = yi), we can re-express

the above as:

Ai, j = BiPBT
j .

Since P is composed of strictly positive elements, and is diagonal (and thus PSD),
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we re-express this as:

Ai, j = B̃iB̃T
j , (3.17)

where B̃i = Bi
√

P. We could now try to recover P by decomposing the observed Ai, j

to recover the B̃i, and from there recover P via the relation:

P = diag
(
B̃T

i
~1
)2
, (3.18)

since summing the column of B̃i corresponding to label y is equal to:

√
P(y)

∑
y∈Y∪{∅}

P(λi = y|y) =
√

P(y)

by the law of total probability. However, note that B̃iU for any orthogonal matrix U

also satisfies (3.17), and could thus lead to a potentially infinite number of incorrect

estimates of P.

Instead, we consider the three-way overlaps tensor observed as Ai, j,k, and perform

a tensor decomposition. Note that above, the problem is that matrix decomposition

is typically invariant to rotations and reflections; tensor decompositions have easier-

to-meet uniqueness conditions (and are thus more rigid). To see this, we can apply

Kruskal’s classical identifiability condition for unique 3-tensor decomposition. Con-

sider some tensor

T =

R∑
r=1

Xr ⊗ Yr ⊗ Zr,

where Xr,Yr,Zr are column vectors that make up the matrices X,Y,Z. The Kruskal

rank kX of X is the largest k such that any k columns of X are linearly independent.

Then, the decomposition above is unique if kX + kY + kZ ≥ 2R + 2 [Kruskal, 1977;

Bhaskara et al., 2014]. In our case, our triple views have R = |Y|, and we have

Ai, j,k = B̃i ⊗ B̃ j ⊗ B̃k. (3.19)

Thus, if kB̃i
+ kB̃ j

+ kB̃k
≥ 2|Y| + 2, we have identifiability. Thus, it is sufficient to
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have the columns of each of the B̃i’s be linearly independent. Note that each of the

Bi’s have columns with the same sum, so these columns are only linearly dependent

if they are equal, which would only be the case if the labeling functions were random

voters. Thus, we can use (3.19) to recover the B̃i in a stable fashion, and then use

(3.18) to recover the P(y).

3. Next, we solve the core matrix completion-style problem; we note that in the binary

setting we consider, this is a rank one problem:

ẑ = argminz

∣∣∣∣∣∣Σ−1
O + zzT

∣∣∣∣∣∣
Ω
. (3.20)

This is similar to a standard matrix completion problem, except that (a) while the

parameter matrix zzT is low-rank (rank one in this case), Σ−1
O is full-rank, not low

rank; and (b) rather than observing randomly-sampled entries, Ω is a fixed mask.

Regardless, we can solve this objective using standard approaches, such as stochastic

gradient descent. Also note that we could alternatively solve the system of linear

equations defined in the previous section, Equation 3.16; however the above objective

allows easy incorporation of e.g. regularization amongst other advantages.

4. Once we have recovered z uniquely, we next need to recover ΣOS = c−
1
2 ΣOz. We use

the fact that c = Σ−1
S

(1+zT ΣOz), which we can confirm explicitly below, starting from

the definition of c:

c =
(
ΣS − ΣT

OSΣ
−1
O ΣOS

)−1

=
(
ΣS − (c−

1
2 ΣOz)T Σ−1

O (c−
1
2 ΣOz)

)−1

=
(
ΣS − c−1zT ΣOz

)−1

=⇒ c−1 = ΣS − c−1zT ΣOz

=⇒ c−1
(
1 + zT ΣOz

)
= ΣS

=⇒ c = Σ−1
S

(
1 + zT ΣOz

)
Thus, we can directly recover an estimate of ΣOS from the observed ΣO, known ΣS,

and estimated z.
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5. Finally, recall that θ = E
[
ψ(C̄)

]
, where C̄ can be split into cliques not containing y,

i.e. the set O previously defined; the cliques consisting of those cliques in O plus y;

and y. We already can compute the expected value of the sufficient statistics for the

first and third; for the second one, given our estimate of ΣOS, we have:

E
[
ψ(O)ψ(S)T

]
= E

[
ψ(O)ψ(y)T

]
= ΣOS + E

[
ψ(O)

]
E

[
ψ(y)

]T . (3.21)

Here, we can clearly observe E
[
ψ(O)

]
, and given that we know the class balance

P(y), we also have E
[
ψ(y)

]
; therefore we can compute E

[
ψ(O)ψ(S)T

]
. Therefore we

can recover the full θ by concatenating these vectors.

Predicting Labels with the Label Model

Once we have an estimate of θ, we can make predictions with the label model—i.e. generate

our probabilistic training labels Pθ(y|λ)—using the junction tree we have already defined

over Gλ. Specifically, let C̄ be the set of maximal cliques (nodes) in the junction tree, and

let S be the set of separator sets. Then we have:

pθ(y, λ) =

∏
C∈C̄ P(VC)∏
S∈S P(VS )

=

∏
C∈C̄ θ(C,(y,λC))∏
S∈S θ(S ,(y,λS ))

,

where VC = {Vi}i∈C, where V0 = y and Vi>0 = λi. Thus, we can directly compute the

predicted labels Pθ(y|λ) based on the estimated parameters θ.

Learning the Pairwise-Dependent k-ary Label Model

We can easily extend the approach outlined above to handle the k-ary setting where r =

|Y| > 2, and z is now a matrix Z ∈ RdO×dS , leading to a rank-(r− 1) matrix completion-style

problem (see [Ratner et al., 2019b] for details). However, we run into the difficulty that we

can now only recover Z up to orthogonal transformations. We can handle this difficulty in

one of two ways.

A first approach is to learn a simplified class-conditional model of the noisy labeling

process, where we learn one accuracy parameter for each label value λi that each labeling

function emits. This is equivalent to assuming that a source may have a different accuracy
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on each different class, but that if it emits a certain label incorrectly, it does so uniformly

over the different true labels y. This is simpler than our general Pairwise-Dependent k-ary

label model, but is still a far more expressive model than the commonly considered one,

where each source is modeled by a single accuracy parameter, e.g. in [Dawid and Skene,

1979; Ratner et al., 2016]. We can see that our model estimation problem in this setting is

mappable to a binarized version of the labels, yB = 1 {y = y} for some y, as given the above

assumption, we can recover the parameters for the normal version algebraically from the

binarized one. Thus, this lets us solve a rank-one problem again, as above; for further

details see [Ratner et al., 2019b].

A second approach is to perform a two-step procedure, where first we learn a model

over a subset of the labeling functions that are pairwise conditionally independent as in our

procedure for learning the class balance, which also returns the labeling function accuracies

in a way that is stable (i.e. returns a unique solution) even in the general k-ary model;

and then, we can use this solution to break symmetries (e.g. as a constraint) in our full

estimation algorithm as above. For further details see [Ratner et al., 2019b].

Handling Non-Singleton Separator Sets

Finally, we briefly consider the setting where Gλ has arbitrary separator sets S. Let dS =∑
S∈S(|Y| − 1)|S |. We see that we could solve this using the approach outlined thus far, but

for two changes: first, that it would now involve solving a rank-dS matrix completion-style

problem; and second, that we do not know ΣS, as it now involves terms besides the class

balance.

Note first of all that we can always add edges between labeling functions to Gλ such

that it has singleton separator sets (intuitively, this consists of “completing the clusters”),

and as long as our problem is still identifiable, we can simply solve this instance as above.

Instead, we can also take a multi-step approach, wherein we first consider one or more

subgraphs of Gλ that contain only singleton separator sets, and contain the cliques in S.

We can then solve this problem as before, which then gives us the needed information to

identify the elements of ΣS in our full problem, which we can then solve. In particular,

we see that this multi-step approach is possible whenever the graph Gλ has at least three

components that are disconnected except for through y.
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3.3.3 Theoretical Analysis

We now return to considering the Pairwise-Dependent Binary label model, to theoretically

analyze its convergence properties, and that of the end discriminative model trained with

its labels, with respect to the set of labeling functions and number unlabeled data points

they are applied to.

Our ultimate goal is to train an end model using the labeling function labels, denoised

and combined by the label model θ̂ we have estimated. We connect the generalization

error of this end model to the estimation error of Algorithm 1, ultimately showing that the

generalization error scales as n−
1
2 , where n is the number of unlabeled data points. This key

result establishes the same asymptotic scaling as traditionally supervised learning methods,

but with respect to unlabeled data points.

Let pθ̂(ỹ | λ) be the probabilistic label (i.e. distribution) predicted by our label model,

given the labeling function labels λ as input, which we compute using the estimated θ̂. We

then train an end multi-task discriminative model hw : X 7→ Y parameterized by w, by

minimizing the expected loss with respect to the label model over n unlabeled data points.

Let l(hw(x), y) be a bounded loss function such that without loss of generality l(hw(x), y) ≤

1; then we minimize the empirical noise aware loss:

ŵ = argminw
1
n

n∑
i=1

Eỹ∼pθ̂(·|λ)

[
l(w, x(i), ỹ)

]
, (3.22)

and let w̃ be the w that minimizes the true noise-aware loss. This minimization can be

performed by standard methods and is not the focus of this section; let the solution ŵ satisfy

E
[
‖ŵ − w̃‖2

]
≤ γ. We make several assumptions, following those in Section 3.2.2: (1) that

for some label model parameters θ∗, sampling (λ, y) ∼ pθ∗ is the same as sampling from the

true distribution, (λ, y) ∼ D; and (2) that the labels y are independent of the features of the

end model given λ sampled from pθ∗ , that is, the output of the optimal label model provides

sufficient information to discern the true label. Then we have the following result:

Theorem 3. Let w̃ minimize the expected noise aware loss, using labeling function pa-

rameters ŵ estimated with Algorithm 1. Let ŵ minimize the empirical noise aware loss

with E
[
‖ŵ − w̃‖2

]
≤ γ, w∗ = minw l(w, x, y), and let the assumptions above hold. Then the
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generalization error is bounded by:

E
[
l(ŵ, x, y) − l(w∗, x, y)

]
≤ γ + 4|Y|

∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣ .
Thus, to control the generalization error, we must control

∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣, which we do in

Theorem 4:

Theorem 4. Let θ̂ be an estimate of θ∗ produced by Algorithm 1 run over n unlabeled data

points. Let a :=
(

dO
ΣS

+
(

dO
ΣS

)2
λmax(KO)

) 1
2

and b := ‖Σ−1
O ‖

2

(Σ−1
O )min

. Then, we have:

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣] ≤ 16(|Y| − 1)d2

O

√
32π

n
abσmax(M+

Ω)
(
3
√

dOaλ−1
min(ΣO) + 1

) (
κ(ΣO) + λ−1

min(ΣO)
)
.

Interpreting the Bound We briefly explain the key terms controlling the bound in The-

orem 4; more detail is found in Appendix C. Our primary result is that the estimation error

scales as n−
1
2 . Next, σmax(M+

Ω
), the largest singular value of the pseudoinverse M+

Ω
, has a

deep connection to the density of the graph Ginv. The smaller this quantity, the more infor-

mation we have about Ginv, and the easier it is to estimate the accuracies. Next, λmin(ΣO),

the smallest eigenvalue of the observed covariance matrix, reflects the conditioning of ΣO;

better conditioning yields easier estimation, and is roughly determined by how far away

from random guessing the worst labeling function is, as well as how conditionally inde-

pendent the labeling functions are. λmax(KO), the largest eigenvalue of the upper-left block

of the inverse covariance matrix, similarly reflects the overall conditioning of Σ. Finally,

(Σ−1
O )min, the smallest entry of the inverse observed matrix, reflects the smallest non-zero

correlation between labeling function accuracies; distinguishing between small correlations

and independent labeling functions requires more samples.

3.3.4 Experiments

In Figure 3.5, we plot the performance of our algorithm on synthetic data, showing its

scaling with the number of unlabeled data points n, the density of pairwise dependencies in

Gλ, and the runtime performance as compared to the approach in Section 3.2 using Gibbs
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Figure 3.5: (Left) Estimation error
∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣ decreases with increasing n. (Middle) Given

Gλ, our model successfully recovers the labeling function accuracies even with many pair-
wise dependencies among labeling functions, where a naive conditionally-independent
model fails. (Right) The runtime of the approach is independent of n after an initial matrix
multiply, and can thus be multiple orders of magnitude faster than Gibbs sampling-based
approaches, as in Section 3.2.

sampling and SGD. We report further experiments validating this matrix-completion style

approach as applied to the multi-task weak supervision problem covered in Section 5.

3.4 Structure Learning for Weak Supervision

In Sections 3.1 through 3.3, we assume that we are given a set of conditional dependencies

between the labeling functions—represented in Section 3.3 as a graph of pairwise correla-

tion edges Gλ—which defines the structure of the label model we aim to learn.

In some cases the user may be able to define this structure manually with minimal

inconvenience, e.g. in settings where there are a small number of labeling functions, and

a small number of more obvious dependencies to model. For example, a user might write

two distant supervision-style labeling functions that use the same knowledge base, and thus

the user may think modeling a dependency edge here is prudent, and can specify this.

However, in most settings, we would like to automate this process of specifying de-

pendency edges. This can be viewed as a variant of a classic model structure learning

problem, where we have a latent variable model due to the unobserved ground truth, and

other unique aspects of our weak supervision setting to leverage. We now briefly summa-

rize three approaches for structure learning in the data programming setting: two based on
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statistical approaches, and one based on analyzing the code content of the user-authored

labeling functions.

3.4.1 Statistical Approaches

l1-Regularized Marginal Pseudolikelihood Approach

A first approach is based on extending a classic structure learning technique to the data pro-

gramming setting, where we do not observe the ground truth labels y. In this approach, we

optimize the log marginal pseudolikelihood of the outputs of a single labeling function λi,

i.e., conditioned on the outputs of the others λ\i, using `1 regularization to induce sparsity.

The objective is

argminθ − log pθ(λ j | λ\ j) + ε‖θ‖1 (3.23)

= argminθ −
n∑

i=1

log
∑
y(i)

pθ(λ
(i)
j , y

(i) | λ(i)
\ j) + ε‖θ‖1,

where ε > 0 is a hyperparameter. By conditioning on all other labeling functions in each

term log
∑

yi
pθ(λ

(i)
j , y

(i) | λ(i)
\ j), we ensure that the gradient can be computed in polynomial

time with respect to the number of labeling functions, data points, and possible depen-

dencies; without requiring any sampling or variational approximations. We optimize for

each labeling function λ j in turn, selecting those dependencies with parameters that have a

sufficiently large magnitude and adding them to the estimated structure. Note that ε effec-

tively controls a tradeoff space between model fidelity (density of edges) and computational

complexity. We empirically and theoretically validate this basic procedure in [Bach et al.,

2017], and explore the resulting tradeoff space controlled by ε in [Ratner et al., 2017a].

Robust PCA-Based Approach

We can also extend robust PCA [Candès et al., 2011; Chandrasekaran et al., 2011] to the

data programming setting—and specifically the matrix completion-style formulation in

Section 3.3—and use it to learn the structure of the label model. The robust PCA setup

consists of a matrix M ∈ Rm×m that is equal to the sum of a low-rank matrix and a sparse
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Algorithm 2 Weak Supervision Structure Learning with Robust PCA

Input: Estimate of the covariance matrix Σ̂O, parameters λn, γ, threshold T , loss function
L(·, ·)
Solve:

(Ŝ , L̂) = argmin(S ,L)L(S − L,Σ(n)
O ) + λn(γ‖S ‖1 + ‖L‖∗)

s.t. S − L � 0, L � 0
Ê ← {(i, j) : i < j, Ŝ i j > T }

Return: Ĝ = (V, Ê)

matrix, M = L + S , where rank(L) = r and |supp(S )| = k. In our setting, we can let L = zzT

be the rank-one (or low-rank) parameters we aim to estimate, and let S = KO be the ob-

served block of the inverse covariance matrix, as in Section 3.3, which we assume is graph

structured and sparse. Thus, recovering the sparsity pattern of KO is our structure learning

objective.

Algorithm 2 describes our latent structure learning method. We use the loss function

from [Wu et al., 2017]:

L(S − L,Σ(n)
O ) =

1
2

tr((S − L)Σ(n)
( S − L)) − tr(S − L),

and implement Algorithm 2 using standard convex solvers. The recovered sparse matrix Ŝ

does not have entries that are perfectly 0. Therefore, a key choice is to set a threshold T to

find the zeros in Ŝ such that

S̃ i j =

Ŝ i j if Ŝ i j > T,

0 if Ŝ i j ≤ T.

The nonzero entries of S̃ then define the structure Gλ. In [Varma et al., 2019], we then

analyze the theoretical convergence of Algorithm 2 under two different conditions moti-

vated by the data programming setting, and empirically validate its performance on several

datasets.
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3.4.2 Using Static Analysis

In the statistical structure learning approaches of Section 3.4.2, we proceed assuming we

only have access to the observed outputs of the m labeling functions. However, in many

settings, these labeling functions are not black boxes, but rather consist of user-authored

code that we have access to. This unique setting raises the possibility of “opening up the

black boxes” of the labeling functions and applying static analysis techniques to suggest the

dependency structure of our label model. For example, if two labeling functions λi, λ j use

the same knowledge base, data resource, model, or heuristic pattern—all easily detectable

via simple static analysis of the labeling function code—then we might find it reasonable

to add the pairwise correlation edge (λi, λ j) to Gλ. Another example is [Varma et al., 2017]:

here the authors consider the setting of data programming applied to image classification

tasks, where the labeling functions are written over pre-processed features or primitives. In

this work, whenever labeling functions utilize the same primitive, a corresponding edge is

added to the dependency graph; the authors demonstrate that this leads to empirical gains

over both an empty dependency graph (e.g. the conditionally-independent label model)

and the structure learned via a statistical approach as in Section 3.4.2. In practice, a com-

bination of (i) user-provided dependencies, (ii) statistically learned dependencies, and (iii)

dependencies detected via static analysis of labeling function code (when available) can be

used.

3.5 Related Work

Data Programming The overall data programming concept and approach presented in

this section builds on many previous approaches in machine learning.

Distant supervision is one preceding paradigm for programmatically creating training

sets. The canonical example is relation extraction from text, wherein a knowledge base

of known relations is heuristically mapped to label a set of mentions in an input corpus

as ground truth examples [Craven et al., 1999; Mintz et al., 2009; Zhang et al., 2017a].

Basic extensions group these mapped examples by the particular textual pattern w that

they occur with, and cast the problem as a multiple instance learning one [Riedel et al.,
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2010; Hoffmann et al., 2011]. Other extensions actually model the accuracy of this pattern

w using a discriminative feature-based model [Roth and Klakow, 2013a], or generative

models such as hierarchical topic models [Alfonseca et al., 2012; Roth and Klakow, 2013b;

Takamatsu et al., 2012]. Like our approach, these latter methods model a generative process

of training set creation, however in a proscribed way that is not based on user input as

in our approach. There is also a wealth of examples where additional heuristic patterns

used to label training data are collected from unlabeled data [Bunescu and Mooney, 2007]

or directly from users [Shin et al., 2015; Mallory et al., 2015], in a similar manner to

our approach, but without a framework to deal with the fact that said labels are explicitly

noisy. Other related approaches include pattern-based supervision [Gupta and Manning,

2014; Zhang et al., 2017a] and feature-annotation techniques [Mann and McCallum, 2010;

Zaidan and Eisner, 2008; Liang et al., 2009].

Crowdsourcing is widely used for various machine learning tasks [Krishna et al., 2016;

Gao et al., 2011]. Of particular relevance to our problem setting is the theoretical ques-

tion of how to model the accuracy of various experts without ground truth available, clas-

sically raised in the context of crowdsourcing [Dawid and Skene, 1979]. More recent

results provide formal guarantees even in the absence of labeled data using various ap-

proaches [Karger et al., 2011; Parisi et al., 2014; Berend and Kontorovich, 2014; Zhang

et al., 2016b; Dalvi et al., 2013; Joglekar et al., 2015]. Our model can capture the model

described in crowdsourcing, and can be equivalent in the conditionally-independent case

we consider in Section 3.2. However, in addition to generalizing beyond getting inputs

solely from human annotators, we also model user-supplied dependencies between the

“labelers” in our model, which is not natural within the context of crowdsourcing. Ad-

ditionally, while crowdsourcing results focus on the regime of a large number of labelers

each labeling a small subset of the data, we consider a small set of labeling functions each

labeling a large portion of the dataset.

Co-training is a classic procedure for effectively utilizing both a small amount of la-

beled data and a large amount of unlabeled data by selecting two conditionally independent

views of the data [Blum and Mitchell, 1998]. In addition to not needing a set of labeled

data, and allowing for more than two views (labeling functions in our case), our approach

allows explicit modeling of dependencies between views, for example allowing observed
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issues with dependencies between views to be explicitly modeled [Krogel and Scheffer,

2004].

Boosting is a well known procedure for combining the output of many “weak” clas-

sifiers to create a strong classifier in a supervised setting [Schapire and Freund, 2012].

Recently, boosting-like methods have been proposed which leverage unlabeled data in ad-

dition to labeled data, which is also used to set constraints on the accuracies of the individ-

ual classifiers being ensembled [Balsubramani and Freund, 2015]. This is similar in spirit

to our approach, except that labeled data is not explicitly necessary in ours, and richer de-

pendency structures between our “heuristic” classifiers (labeling functions) are supported.

The general case of learning with noisy labels is treated both in classical [Lugosi, 1992]

and more recent contexts [Natarajan et al., 2013]. It has also been studied specifically in

the context of label-noise robust logistic regression [Bootkrajang and Kabán, 2012]. We

consider the more general scenario where multiple noisy labeling functions can conflict

and have dependencies.

Matrix Completion-Style Approaches The matrix completion-style approach presented

in Section 3.3 has connections to the crowdsourcing literature [Karger et al., 2011; Dawid

and Skene, 1979], and in particular to spectral and method of moments-based approaches [Zhang

et al., 2016b; Dalvi et al., 2013; Ghosh et al., 2011; Anandkumar et al., 2014]. It is also

related to recent techniques for estimating classifier accuracies without labeled data in the

presence of structural constraints [Platanios et al., 2017], and uses matrix structure esti-

mation [Loh and Wainwright, 2013] and concentration bounds [Tropp, 2015] for the core

results.

Structure Learning Structure learning is a well-studied problem, but most work has

assumed access to hand-labeled training data. Traditional lines of work focus on the lasso

technique [Tibshirani, 1996; Zhao and Yu, 2006] and other approaches for linear models

[Candes and Tao, 2007; Ng, 2004].

Regularized estimators, such as the L1 pseudolikelihood approach briefly summarized

in Section 3.4, have also been used to select structures for graphical models, such as e.g.

[Meinshausen and Bühlmann, 2006]. Most similar to our proposed L1 pseudo likelihood



CHAPTER 3. DATA PROGRAMMING 68

estimator, [Ravikumar et al., 2010] propose a fully supervised pseudolikelihood estimator

for Ising models. Other related work includes [Chandrasekaran et al., 2012], which con-

siders learning the structure of Gaussian graphical models with latent variables, grafting

[Perkins et al., 2003; Zhu et al., 2010] and the information bottleneck approach for learn-

ing Bayesian networks with latent variables [Elidan and Friedman, 2005].

The supervised, fully observed setting includes matrix-wise methods more similar to

the robust PCA-based approach briefly summarized in Section 3.4, which use the inverse

covariance matrix to determine the structure [Friedman et al., 2008; Ravikumar et al., 2011;

Loh and Wainwright, 2013]. In the latent variable setting, works performing structure

learning via robust-PCA like approaches include [Chandrasekaran et al., 2010; Meng et al.,

2014; Wu et al., 2017]. For further details on related work see [Bach et al., 2017; Varma

et al., 2019].



Chapter 4

Snorkel: A System for Weak Supervision

In Chapter 3 we introduced data programming, a new paradigm for programmatic labeling

of training datasets, and focused on the core model, algorithm, and theory components of

this approach. However, the core motivation of this thesis work is to use approaches like

data programming to make modern machine learning tools more efficient and accessible

for real users.

In this chapter, we present Snorkel, a system for programmatically building and manag-

ing training datasets built around the core paradigm of data programming. In Snorkel, we

take the core ideas and workflows proposed in data programming and add user interfaces,

end-to-end data management, and optimizers for new tradeoffs introduced, and combine the

entire resulting system into an open source software package that has now been deployed in

a wide range of real-world use cases across industry, medicine, science, and government1.

We start by providing an overview of the system architecture of Snorkel, describing new

weak supervision modeling tradeoffs that arise, and presenting an optimizer for managing

them. We then review an extensive set of experiments, user studies, and real-world appli-

cations. In two collaborations, with the U.S. Department of Veterans Affairs and the U.S.

Food and Drug Administration, and on four open-source text and image data sets represen-

tative of other deployments, we find that Snorkel provides 132% average improvements to

predictive performance over prior heuristic approaches and comes within an average 3.60%

of the predictive performance of large hand-curated training sets. In a user study, we find

1https://snorkel.org
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that subject matter experts build models 2.8x faster and increase predictive performance an

average 45.5% versus seven hours of hand labeling. Finally, we briefly summarize a few

of the many real-world deployments of Snorkel, including applications in knowledge base

construction over the scientific literature and electronic health records, medical imaging

and monitoring over radiograph, EEG, and cardiac video data, and industrial deployments

at companies like Google and Intel. We present these results to provide validation for

Snorkel, data programming, and more broadly, the core thesis that programmatically la-

beling and managing training datasets can be a powerful way to build machine learning

applications in the real world.

Motivation In the last several years, there has been an explosion of interest in machine-

learning-based systems across industry, government, and academia, with an estimated spend

this year of $12.5 billion [Minonne et al., 2017]. A central driver has been the advent

of deep learning techniques, which can learn task-specific representations of input data,

obviating what used to be the most time-consuming development task: feature engineer-

ing. These learned representations are particularly effective for tasks like natural language

processing and image analysis, which have high-dimensional, high-variance input that is

impossible to fully capture with simple rules or hand-engineered features [Graves and

Schmidhuber, 2005; Deng et al., 2009]. However, deep learning has a major upfront cost:

these methods need massive training sets of labeled examples to learn from—often tens of

thousands to millions to reach peak predictive performance [Sun et al., 2017].

Such training sets are enormously expensive to create, especially when domain exper-

tise is required. For example, reading scientific papers, analyzing intelligence data, and

interpreting medical images all require labeling by trained subject matter experts (SMEs).

Moreover, we observe from our engagements with collaborators like research labs and ma-

jor technology companies (see Section 4.5) that modeling goals such as class definitions or

granularity change as projects progress, necessitating re-labeling. Some big companies are

able to absorb this cost, hiring large teams to label training data [Metz, 2016; Eadicicco,

2017; Davis et al., 2013]. Other practitioners utilize classic techniques like active learn-

ing [Settles, 2009], transfer learning [Pan and Yang, 2010], and semi-supervised learn-

ing [Chapelle et al., 2009] to reduce the number of training labels needed. However, the
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UNLABELED DATA

LABEL SOURCE 1

LABEL SOURCE 2

100k labels

1k labels

Accuracy: 60%

…

Accuracy: 90%

Figure 4.1: In Example 4.0.1, training data is labeled by sources of differing accuracy and
coverage. Two key challenges arise in using this weak supervision effectively. First, we
need a way to estimate the unknown source accuracies to resolve disagreements. Second,
we need to pass on this critical lineage information to the end model being trained.

bulk of practitioners are increasingly turning to some form of weak supervision: cheaper

sources of labels that are noisier or heuristic. The most popular form is distant supervi-

sion, in which the records of an external knowledge base are heuristically aligned with data

points to produce noisy labels [Bunescu and Mooney, 2007; Mintz et al., 2009; Alfonseca

et al., 2012]. Other forms include crowdsourced labels [Yuen et al., 2011; Quinn and Bed-

erson, 2011], rules and heuristics for labeling data [Zhang et al., 2017a; Rekatsinas et al.,

2017a], and others [Zaidan and Eisner, 2008; Liang et al., 2009; Mann and McCallum,

2010; Stewart and Ermon, 2017]. While these sources are inexpensive, they often have

limited accuracy and coverage.

Ideally, we would combine the labels from many weak supervision sources to increase

the accuracy and coverage of our training set. However, two key challenges arise in doing

so effectively. First, sources will overlap and conflict, and to resolve their conflicts we

need to estimate their accuracies and correlation structure, without access to ground truth.

Second, we need to pass on critical lineage information about label quality to the end model

being trained.

Example 4.0.1. In Figure 4.1, we obtain labels from a high accuracy, low coverage Source

1, and from a low accuracy, high coverage Source 2, which overlap and disagree (split-color

points). If we take an unweighted majority vote to resolve conflicts, we end up with null

(tie-vote) labels. If we could correctly estimate the source accuracies, we would resolve

conflicts in the direction of Source 1.

We would still need to pass this information on to the end model being trained. Suppose
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that we took labels from Source 1 where available, and otherwise took labels from Source

2. Then, the expected training set accuracy would be 60.3%—only marginally better than

the weaker source. Instead we should represent training label lineage in end model training,

weighting labels generated by high-accuracy sources more.

In Chapter 3, we reviewed data programming as a paradigm for addressing both of

these challenges by modeling multiple label sources without access to ground truth, and

generating probabilistic training labels representing the lineage of the individual labels.

We prove, in Sections 3.2.2 and 3.3.3, surprisingly, we can recover source accuracy and

correlation structure without hand-labeled training data.

Snorkel In this chapter, we present Snorkel, the first end-to-end system for combining

weak supervision sources to rapidly create training data. Snorkel was built as a proto-

type to study how people could use data programming, a fundamentally new approach

to building machine learning applications. Through weekly hackathons and office hours

held at Stanford University over the majority of the period covered by this dissertation, we

have interacted with a growing user community around Snorkel’s open source implementa-

tion.2 We have observed SMEs in industry, science, and government deploying Snorkel for

knowledge base construction, image analysis, bioinformatics, fraud detection, and more.

From this experience, we have distilled three principles that have shaped Snorkel’s design:

1. Bring All Sources to Bear: The system should enable users to opportunistically use

labels from all available weak supervision sources.

2. Training Data as the Interface to ML: The system should model label sources to

produce a single, probabilistic label for each data point and train any of a wide range

of classifiers to generalize beyond those sources.

3. Supervision as Interactive Programming: The system should provide rapid results

in response to user supervision. We envision weak supervision as the REPL-like

interface for machine learning.

Our work on Snorkel in this chapter makes the following technical contributions:
2http://snorkel.stanford.edu

http://snorkel.stanford.edu
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A Flexible Interface for Sources We observe that the heterogeneity of weak supervision

strategies is a stumbling block for developers. Different types of weak supervision operate

on different scopes of the input data. For example, distant supervision has to be mapped

programmatically to specific spans of text. Crowd workers and weak classifiers often op-

erate over entire documents or images. Heuristic rules are open ended; they can leverage

information from multiple contexts simultaneously, such as combining information from a

document’s title, named entities in the text, and knowledge bases. This heterogeneity was

cumbersome enough to completely block users of early versions of Snorkel.

To address this challenge, we built an interface layer around the abstract concept of

a labeling function (LF) (Section 4.1). We developed a flexible language for expressing

weak supervision strategies and supporting data structures. We observed accelerated user

productivity with these tools, which we validated in a user study (Section 4.4) where SMEs

build models 2.8× faster and increase predictive performance an average 45.5% versus

seven hours of hand labeling.

Tradeoffs in Modeling of Sources Snorkel learns the accuracies of weak supervision

sources without access to ground truth using a generative model (see Chapter 3). Further-

more, it also learns correlations and other statistical dependencies among sources, correct-

ing for dependencies in labeling functions that skew the estimated accuracies (see Section

3.4). This paradigm gives rise to previously unexplored tradeoff spaces between predictive

performance and speed. The natural first question is: when does modeling the accuracies

of sources improve predictive performance? Further, how many dependencies, such as

correlations, are worth modeling?

In Section 4.2, we describe the tradeoffs between predictive performance and training

time in generative models for weak supervision. While modeling source accuracies and

correlations will not hurt predictive performance, we present a theoretical analysis of when

a simple majority vote will work just as well. Based on our conclusions, we introduce an

optimizer for deciding when to model accuracies of labeling functions, and when learning

can be skipped in favor of a simple majority vote. Further, our optimizer automatically

decides which correlations to model among labeling functions. This optimizer correctly

predicts the advantage of generative modeling over majority vote to within 2.16 accuracy
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points on average on our evaluation tasks, and accelerates pipeline executions by up to 1.8×.

It also enables us to gain 60%–70% of the benefit of correlation learning while saving up

to 61% of training time (34 minutes per execution).

First End-to-End System for Data Programming Snorkel is the first system to imple-

ment the data programming paradigm in Chapter 3. Previous ML systems [Zhang et al.,

2017a] required extensive feature engineering and model specification, leading to confu-

sion about where to inject relevant domain knowledge. While programming weak super-

vision seems superficially similar to feature engineering, we observe that users approach

the two processes very differently. The vision of this dissertation—weak supervision as

the sole port of interaction for machine learning—implies radically different workflows,

requiring a proof of concept.

Snorkel demonstrates that this paradigm enables users to develop high-quality models

for a wide range of tasks. In Section 4.3, we report on two deployments of Snorkel, in col-

laboration with the U.S. Department of Veterans Affairs and Stanford Hospital and Clinics,

and the U.S. Food and Drug Administration, where Snorkel improves over heuristic base-

lines by an average 110%, and report results on four open-source datasets that are represen-

tative of other Snorkel deployments, including bioinformatics, medical image analysis, and

crowdsourcing; on which Snorkel beats heuristics by an average 153% and comes within

an average 3.60% of the predictive performance of large hand-curated training sets.

Outline of Chapter In this chapter we describe Snorkel, an end-to-end system for build-

ing machine learning applications using the data programming paradigm introduced in

Chapter 3, and describe extensive experimental validation:

• In Section 4.1, we start by describing the architecture of Snorkel, built around the

paradigm of data programming.

• In Section 4.2, we study new weak supervision tradeoffs introduced by data pro-

gramming and Snorkel–namely, the time-performance tradeoffs around modeling the

accuracies and correlation structures of the user-provided labeling functions–and in-

troduce heuristic optimizers for managing these tradeoffs.
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• In Section 4.3, we describe several experiments applying Snorkel to various bench-

mark and real-world applications, which serve to validate and ablate the contributions

of different components and aspects of Snorkel.

• In Section 4.4, we report on one of several user studies conducted as part of this thesis

work in order to validate the ease of use of Snorkel, especially insomuch as it makes

modern machine learning tools more accessible to non-expert users.

• In Section 4.5, we report on several of the real-world applications of Snorkel, vali-

dating its broader utility.

• Finally, in Section 4.6 we review related work.

In Chapter 5, we describe how Snorkel can be extended to the multi-task setting, and in

Chapter 6 we introduce another form of programmatic weak supervision, data augmenta-

tion, both of which are now integrated into the Snorkel open source software package3.

4.1 Snorkel Architecture

Snorkel’s workflow is designed around data programming [Ratner et al., 2016; Bach et al.,

2017], a fundamentally new paradigm for training machine learning models using weak

supervision, and proceeds in three main stages (Figure 4.2):

1. Writing Labeling Functions: Rather than hand-labeling training data, users of

Snorkel write labeling functions, which allow them to express various weak supervi-

sion sources such as patterns, heuristics, external knowledge bases, and more. This

was the component most informed by early interactions (and mistakes) with users

over initial deployments, and we present a flexible interface and supporting data

model.

2. Modeling Accuracies and Correlations: Next, Snorkel automatically learns a gen-

erative label model (e.g. see Chapter 3) over the labeling functions, which allows it to

3https://snorkel.org; as of version 0.9.

https://snorkel.org
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Figure 4.2: An overview of the Snorkel system. (1) SME users write labeling functions
(LFs) that express weak supervision sources like distant supervision, patterns, and heuris-
tics. (2) Snorkel applies the LFs over unlabeled data and learns a generative model to
combine the LFs’ outputs into probabilistic labels. (3) Snorkel uses these labels to train a
discriminative classification model, such as a deep neural network.

estimate their accuracies and correlations. This step uses no ground-truth data, learn-

ing instead from the agreements and disagreements of the labeling functions. We

observe that this step improves end predictive performance 5.81% over Snorkel with

unweighted label combination, and anecdotally that it streamlines the user develop-

ment experience by providing actionable feedback about labeling function quality.

3. Training a Discriminative Model: The output of Snorkel is a set of probabilistic

labels that can be used to train a wide variety of state-of-the-art machine learning

models, such as popular deep learning models. While the generative model is es-

sentially a re-weighted combination of the user-provided labeling functions—which

tend to be precise but low-coverage—modern discriminative models can retain this

precision while learning to generalize beyond the labeling functions, increasing cov-

erage and robustness on unseen data.

Next we set up the problem Snorkel addresses and describe its main components and

design decisions.

Setup Our goal is to learn a parameterized classification model hw that, given a data point

x ∈ X, predicts its label y ∈ Y, where the set of possible labelsY is discrete. For simplicity,
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we focus on the binary setting Y = {−1, 1}, though we include a multi-class application in

our experiments. For example, x might be a medical image, and y a label indicating normal

versus abnormal. In the relation extraction examples we look at, we often refer to x as a

candidate. In a traditional supervised learning setup, we would learn hw by fitting it to a

training set of labeled data points. However, in our setting, we assume that we only have

access to unlabeled data for training. We do assume access to a small set of labeled data

used during development, called the development set, and a blind, held-out labeled test set

for evaluation. These sets can be orders of magnitudes smaller than a training set, making

them economical to obtain.

The user of Snorkel aims to generate training labels by providing a set of labeling

functions, which are black-box functions, λ j : X → Y ∪ {∅}, that take in a data point and

output a label where we again use ∅ to denote that the labeling function abstains. Given

n unlabeled data points and m labeling functions, Snorkel applies the labeling functions

over the unlabeled data to produce a matrix of labeling function outputs Λ ∈ (Y ∪ {∅})n×m.

The goal of the remaining Snorkel pipeline is to synthesize this label matrix Λ—which

may contain overlapping and conflicting labels for each data point—into a single vector of

probabilistic training labels ỹ = (ỹ(1), ..., ỹ(n)), where ỹ(i) ∈ [0, 1]. These training labels can

then be used to train a discriminative model.

Next, we introduce the running example of a text relation extraction task as a proxy for

many real-world knowledge base construction and data analysis tasks:

Example 4.1.1. Consider the task of extracting mentions of adverse chemical-disease re-

lations from the biomedical literature (see CDR task, Section 4.3). Given documents with

mentions of chemicals and diseases tagged, we refer to each co-occurring (chemical, dis-

ease) mention pair as a candidate extraction, which we view as a data point to be classified

as either true or false. For example, in Figure 4.2, we would have two candidates with true

labels y1 = True and y2 = False:

x 1 = Causes (" magnesium ", " quadriplegic ")
x 2 = Causes (" magnesium ", " preeclampsia ")

Data Model A design challenge is managing complex, unstructured data in a way that

enables SMEs to write labeling functions over it. In Snorkel, input data is stored in a context
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Figure 4.3: Labeling functions take as input a Candidate object, representing a data point
to be classified. Each Candidate is a tuple of Context objects, which are part of a hier-
archy representing the local context of the Candidate.

hierarchy. It is made up of context types connected by parent/child relationships, which are

stored in a relational database and made available via an object-relational mapping (ORM)

layer built with SQLAlchemy.4 Each context type represents a conceptual component of

data to be processed by the system or used when writing labeling functions; for example a

document, an image, a paragraph, a sentence, or an embedded table. Candidates—i.e., data

points x—are then defined as tuples of contexts (Figure 4.3).

Example 4.1.2. In our running CDR example, the input documents can be represented in

Snorkel as a hierarchy consisting of Documents, each containing one or more Sentences,

each containing one or more Spans of text. These Spansmay also be tagged with metadata,

such as Entity markers identifying them as chemical or disease mentions (Figure 4.3). A

candidate is then a tuple of two Spans.

4.1.1 A Language for Weak Supervision

Snorkel uses the core abstraction of a labeling function to allow users to specify a wide

range of weak supervision sources such as patterns, heuristics, external knowledge bases,

crowdsourced labels, and more. This higher-level, less precise input is more efficient to

provide (see Section 4.4), and can be automatically denoised and synthesized, as described

in subsequent sections.

In this section, we describe our design choices in building an interface for writing la-

beling functions, which we envision as a unifying programming language for weak super-

vision. These choices were informed to a large degree by interactions—primarily through

weekly office hours—with Snorkel users in bioinformatics, defense, industry, and other

4https://www.sqlalchemy.org/

https://www.sqlalchemy.org/
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areas.5 For example, while we initially intended to have a more complex structure for la-

beling functions, with manually specified types and correlation structure, we quickly found

that simplicity in this respect was critical to usability (and not empirically detrimental to

our ability to model their outputs). We also quickly discovered that users wanted either far

more expressivity or far less of it, compared to our first library of function templates. We

thus trade off expressivity and efficiency by allowing users to write labeling functions at

two levels of abstraction: custom Python functions and declarative operators.

Hand-Defined Labeling Functions: In its most general form, a labeling function is just

an arbitrary snippet of code, usually written in Python, which accepts as input a Candidate

object and either outputs a label or abstains. Often these functions are similar to extract-

transform-load scripts, expressing basic patterns or heuristics, but may use supporting code

or resources and be arbitrarily complex. Writing labeling functions by hand is supported

by the ORM layer, which maps the context hierarchy and associated metadata to an object-

oriented syntax, allowing the user to easily traverse the structure of the input data.

Example 4.1.3. In our running example, we can write a labeling function that checks if the

word “causes” appears between the chemical and disease mentions. If it does, it outputs

True if the chemical mention is first and False if the disease mention is first. If “causes”

does not appear, it outputs None, indicating abstention:
def LF causes (x):

cs , ce = x. chemical . get word range ()
ds , de = x. disease . get word range ()
if ce < ds and " causes " in x. parent . words [ce +1: ds ]:

return True

if de < cs and " causes " in x. parent . words [de +1: cs ]:
return False

return None

We could also write this with Snorkel’s declarative interface:
LF causes = lf search (" { { 1 } } . ∗ \ Wcauses \W . ∗ { { 2 } } ", reverse args =False)

Declarative Labeling Functions: Snorkel includes a library of declarative operators

that encode the most common weak supervision function types, based on our experience
5http://snorkel.stanford.edu#users

http://snorkel.stanford.edu#users
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with users. The semantics and syntax of these operators is simple and easily-customizable,

consisting of two main types: (i) labeling function templates, which are simply functions

that take one or more arguments and output a single labeling function; and (ii) labeling

function generators, which take one or more arguments and output a set of labeling func-

tions (described below). These functions capture a range of common forms of weak super-

vision, for example:

• Pattern-based: Pattern-based heuristics embody the motivation of soliciting higher

information density input from SMEs. For example, pattern-based heuristics en-

compass feature annotations [Zaidan and Eisner, 2008] and pattern-bootstrapping

approaches [Hearst, 1992; Gupta and Manning, 2014] (Example 4.1.3).

• Distant supervision: Distant supervision generates training labels by heuristically

aligning data points with an external knowledge base, and is one of the most popular

forms of weak supervision [Mintz et al., 2009; Alfonseca et al., 2012; Hoffmann

et al., 2011].

• Weak classifiers: Classifiers that are insufficient for our task—e.g., limited coverage,

noisy, biased, and/or trained on a different dataset—can be used as labeling functions.

• Labeling function generators: One higher-level abstraction that we can build on

top of labeling functions in Snorkel is labeling function generators, which generate

multiple labeling functions from a single resource, such as crowdsourced labels or

distant supervision from structured knowledge bases (Example 4.1.4).

Example 4.1.4. A challenge in traditional distant supervision is that different subsets of

knowledge bases have different levels of accuracy and coverage. In our running example,

we can use the Comparative Toxicogenomics Database (CTD)6 as distant supervision, sep-

arately modeling different subsets of it with separate labeling functions. For example, we

might write one labeling function to label a candidate True if it occurs in the “Causes”

subset, and another to label it False if it occurs in the “Treats” subset. We can write this

using a labeling function generator,

6http://ctdbase.org/

http://ctdbase.org/
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LFs CTD = Ontology (ctd ,
{ " Causes ": True , " Treats ": False })

which creates two labeling functions. In this way, generators can be connected to large

resources and create hundreds of labeling functions with a line of code.

Figure 4.4: Labeling functions expressing pattern-matching, heuristic, and distant super-
vision approaches, respectively, in Snorkel’s Jupyter notebook interface, for the Spouses
example. Full code is available in Snorkel’s Intro tutorial.7

Interface Implementation Snorkel’s interface is designed to be accessible to subject

matter expert (SME) users without advanced programming skills. All components run in

7https://github.com/HazyResearch/snorkel/tree/master/tutorials/intro

https://github.com/HazyResearch/snorkel/tree/master/tutorials/intro
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Figure 4.5: The data viewer utility in Snorkel, showing candidate spouse relation men-
tions from the Spouses example, composed of person-person mention pairs.

Jupyter iPython notebooks,8 including writing labeling functions.9 Users can therefore

write labeling functions as arbitrary Python functions for maximum flexibility (Figure 4.4).

We also provide a library of labeling function primitives and generators to more declara-

tively program weak supervision, and a viewer utility (Figure 4.5) that displays candidates,

and also supports annotation, e.g., for constructing a small held-out test set for end evalua-

tion.

Execution Model Since labeling functions operate on discrete candidates, their execution

is embarrassingly parallel. If Snorkel is connected to a relational database that supports si-

multaneous connections, e.g., PostgreSQL, then the master process (usually the notebook

kernel) distributes the primary keys of the candidates to be labeled to Python worker pro-

cesses. The workers independently read from the database to materialize the candidates via

the ORM layer, then execute the labeling functions over them. The labels are returned to

8http://jupyter.org/
9Note that all code is open source and available—with tutorials, blog posts, workshop lectures,

and other material—at snorkel.stanford.edu.

http://jupyter.org/
snorkel.stanford.edu
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the master process which persists them via the ORM layer. Collecting the labels at the mas-

ter is more efficient than having workers write directly to the database, due to table-level

locking.

Snorkel includes a Spark10 integration layer, enabling labeling functions to be run

across a cluster. Once the set of candidates is cached as a Spark data frame, only the

closure of the labeling functions and the resulting labels need to be communicated to and

from the workers. This is particularly helpful in Snorkel’s iterative workflow. Distribut-

ing a large unstructured data set across a cluster is relatively expensive, but only has to be

performed once. Then, as users refine their labeling functions, they can be rerun efficiently.

4.1.2 Generative Model

The core operation of Snorkel is modeling and integrating the noisy signals provided by

a set of labeling functions. Using the data programming covered in Chapter 3, we model

the true class label for a data point as a latent variable in a probabilistic model. In the

simplest case, we model each labeling function as a noisy “voter” which is independent—

i.e., makes errors that are uncorrelated with the other labeling functions. This defines a

generative model of the votes of the labeling functions as noisy signals about the true label.

We can also model statistical dependencies between the labeling functions to improve

predictive performance. For example, if two labeling functions express similar heuristics,

we can include this dependency in the model and avoid a “double counting” problem.

We observe that such pairwise correlations are the most common, so we focus on them

in this paper (though handling higher order dependencies is straightforward). We use the

structure learning methods briefly reviewed in Section 3.4 to select a set E of labeling

function pairs ( j, k)–i.e. edges in the previously defined labeling function dependency graph

Gλ = (V, E)–to model as correlated (see Section 4.2.2).

Now we can construct the full generative model as a factor graph, following the maxi-

mum marginal likelihood approach presented in Section 3.2, and which we briefly review

in more concrete detail now. We first apply all the labeling functions to the unlabeled data

points, resulting in a label matrix Λ, where Λi, j = λ(i)
j = λ j(x(i)) is the jth labeling function

10https://spark.apache.org/

https://spark.apache.org/
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applied to the ith data point. We then encode the generative model pθ(Λ, ~y) using three

factor types, representing the labeling propensity, accuracy, and pairwise correlations of

labeling functions:

ψLab
i, j (Λ, ~y) = 1{Λi, j , 0}

ψAcc
i, j (Λ, ~y) = 1{Λi, j = y(i)}

ψCorr
i, j,k (Λ, ~y) = 1{Λi, j = Λi,k} ( j, k) ∈ E

For a given data point x(i), we define the concatenated vector of these factors for all the la-

beling functions j = 1, ...,m and potential correlations E as ψi(Λ, ~y), and the corresponding

vector of parameters θ ∈ R2m+|E|. This defines our model:

pθ(Λ, ~y) = Z−1
θ exp

 n∑
i=1

θTψi(Λ, ~y)

 ,
where Zθ is a normalizing constant. To learn this model without access to the true labels ~y,

we minimize the negative log marginal likelihood given the observed label matrix Λ:

θ̂ = argminθ − log
∑
~y

pθ(Λ, ~y) .

We optimize this objective by interleaving stochastic gradient descent steps with Gibbs

sampling ones, as presented in Section 3.2. We use the Numbskull library,11 a Python

NUMBA-based Gibbs sampler. We then use the distributions pθ̂(y|λ) as probabilistic train-

ing labels.

4.1.3 Discriminative Model

The end goal in Snorkel is to train a model that generalizes beyond the information ex-

pressed in the labeling functions. We train a discriminative model hw on our probabilistic

labels ỹ by minimizing a noise-aware variant of the loss l(hw(x(i)), y(i)), i.e., the expected

11https://github.com/HazyResearch/numbskull

https://github.com/HazyResearch/numbskull
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loss with respect to ỹ:

ŵ = argminw

n∑
i=1

Eỹ∼pθ̂

[
l(hw(x(i)), ỹ)

]
.

Our formal analysis in Sections 3.2.2 and 3.3.3 shows that as we increase the amount

of unlabeled data, the generalization error of discriminative models trained with Snorkel

will decrease at the same asymptotic rate as traditional supervised learning models do with

additional hand-labeled data, allowing us to increase predictive performance by adding

more unlabeled data. Intuitively, this property holds because as more data is provided, the

discriminative model sees more features that co-occur with the heuristics encoded in the

labeling functions.

Example 4.1.5. The CDR data contains the sentence, “Myasthenia gravis presenting as

weakness after magnesium administration.” None of the 33 labeling functions we devel-

oped vote on the corresponding Causes(magnesium, myasthenia gravis) candidate,

i.e., they all abstain. However, a deep neural network trained on probabilistic training la-

bels from Snorkel correctly identifies it as a true mention in our experiments (see Section

4.3).

Snorkel provides connectors for popular machine learning libraries such as TensorFlow

[Abadi et al., 2016] and PyTorch [Paszke, 2017], allowing users to exploit commodity

models like deep neural networks that do not require hand-engineering of features and

have robust predictive performance across a wide range of tasks.

4.2 Weak Supervision Tradeoffs

We study the fundamental question of when—and at what level of complexity—we should

expect Snorkel’s generative model to yield the greatest predictive performance gains. Un-

derstanding these performance regimes can help guide users, and introduces a tradeoff

space between predictive performance and speed. We characterize this space in two parts:
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first, by analyzing when the generative model can be approximated by an unweighted ma-

jority vote, and second, by automatically selecting the complexity of the correlation struc-

ture to model. We then introduce a two-stage, rule-based optimizer to support fast devel-

opment cycles.

4.2.1 Modeling Accuracies

The natural first question when studying systems for weak supervision is, “When does

modeling the accuracies of sources improve end-to-end predictive performance?” We study

that question in this subsection and propose a heuristic to identify settings in which this

modeling step is most beneficial.

Tradeoff Space

We start by considering the label density dΛ of the label matrix Λ, defined as the mean

number of non-abstention labels per data point. In the low-density setting, sparsity of

labels will mean that there is limited room for even an optimal weighting of the labeling

functions to diverge much from the majority vote. Conversely, as the label density grows,

known theory confirms that the majority vote will eventually be optimal [Li et al., 2013]. It

is the middle-density regime where we expect to most benefit from applying the generative

model. We start by defining a measure of the benefit of weighting the labeling functions by

their true accuracies—in other words, the predictions of a perfectly estimated generative

model—versus an unweighted majority vote:

Definition 1. (Modeling Advantage) Let the weighted majority vote of m labeling func-

tions on data point x with labeling function output vector λ be denoted as fθ(λ) =
∑m

j=1 θ jλ j,

and the unweighted majority vote (MV) as f1(λ) =
∑m

j=1 λ j, where we consider the binary

classification setting and represent an abstaining vote for simplicity as 0. We define the

modeling advantage Aθ as the improvement in accuracy of fθ over f1 for a dataset:

Aθ(Λ, ~y) =
1
n

n∑
i=1

(
1

{
y(i) fθ(λ(i)) > 0 ∧ y(i) f1(λ(i)) ≤ 0

}
− 1

{
y(i) fθ(λ(i)) ≤ 0 ∧ y(i) f1(λ(i)) > 0

})
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Figure 4.6: A plot of the modeling advantage, i.e., the improvement in label accuracy
from the generative model, as a function of the number of labeling functions (equivalently,
the label density) on a synthetic dataset.12 We plot the advantage obtained by a learned
generative model (GM), Aθ; by an optimal model A∗; the upper bound Ã∗ used in our
optimizer; and the low-density bound (Proposition 1).

In other words, Aθ is the number of times fθ correctly disagrees with f1 on a label, minus

the number of times it incorrectly disagrees. Let the optimal advantage A∗ = Aθ∗ be the

advantage using the optimal weights θ∗ (WMV*).

Additionally, let:

α∗ =
1
m

m∑
j=1

α∗j =
1
m

m∑
j=1

1/(1 + exp(θ∗j))

be the average accuracies of the labeling functions. To build intuition, we start by analyzing

the optimal advantage for three regimes of label density (see Figure 4.6):

12We generate a class-balanced dataset of n = 1000 data points with binary labels, and m inde-
pendent labeling functions with average accuracy 75% and a fixed 10% probability of voting.
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Low Label Density In this sparse setting, very few data points have more than one non-

abstaining label; only a small number have multiple conflicting labels. We have observed

this occurring, for example, in the early stages of application development. We see that with

non-adversarial labeling functions (θ∗ > 0), even an optimal generative model (WMV*) can

only disagree with MV when there are disagreeing labels, which will occur infrequently.

We see that the expected optimal advantage will have an upper bound that falls quadrati-

cally with label density:

Proposition 1. (Low-Density Upper Bound) Assume that P(Λi, j , 0) = pl ∀i, j, and

θ∗j > 0 ∀ j. Then, the expected label density is d̄ = mpl, and

EΛ,y,θ∗ [A∗] ≤ d̄2α∗(1 − α∗) (4.1)

Proof Sketch: We bound the advantage above by computing the expected number of

pairwise disagreements; for details, see [Ratner et al., 2017a].

High Label Density In this setting, the majority of the data points have a large number

of labels. For example, we might be working in an extremely high-volume crowdsourcing

setting, or an application with many high-coverage knowledge bases as distant supervi-

sion. Under modest assumptions—namely, that the average labeling function accuracy α∗

is greater than 50%—it is known that the majority vote converges exponentially to an op-

timal solution as the average label density d̄ increases, which serves as an upper bound for

the expected optimal advantage as well:

Proposition 2. (High-Density Upper Bound) Assume that P(Λi, j , 0) = pl ∀i, j, and that

α∗ > 1
2 . Then:

EΛ,y,θ∗ [A∗] ≤ e−2pl(α∗− 1
2 )2

d̄ (4.2)

Proof: This follows from an application of Hoeffding’s inequality; for details, see [Rat-

ner et al., 2017a].
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Table 4.1: Modeling advantage Aθ attained using a generative model for several appli-
cations in Snorkel (Section 4.3), the upper bound Ã∗ used by our optimizer, the modeling
strategy selected by the optimizer—either majority vote (MV) or generative model (GM)—
and the empirical label density dΛ.

Dataset Aθ (%) Ã∗ (%) Modeling Strategy dΛ

Radiology 7.0 12.4 GM 2.3
CDR 4.9 7.9 GM 1.8
Spouses 4.4 4.6 GM 1.4
Chem 0.1 0.3 MV 1.2
EHR 2.8 4.8 GM 1.2

Medium Label Density In this middle regime, we expect that modeling the accuracies

of the labeling functions will deliver the greatest gains in predictive performance because

we will have many data points with a small number of disagreeing labeling functions. For

such points, the estimated labeling function accuracies can heavily affect the predicted la-

bels. We indeed see gains in the empirical results using an independent generative model

that only includes accuracy factors ψAcc
i, j (Table 4.1). Furthermore, the guarantees in Sec-

tion 3.2.2 establish that we can learn the optimal weights, and thus approach the optimal

advantage.

Automatically Choosing a Modeling Strategy

The bounds in the previous subsection imply that there are settings in which we should be

able to safely skip modeling the labeling function accuracies, simply taking the unweighted

majority vote instead. However, in practice, the overall label density dΛ is insufficiently

precise to determine the transition points of interest, given a user time-cost tradeoff pref-

erence (characterized by the advantage tolerance parameter γ in Algorithm 3). We show

this in Table 4.1 using our application data sets from Section 4.3. For example, we see that

the Chem and EHR label matrices have equivalent label densities; however, modeling the

labeling function accuracies has a much greater effect for EHR than for Chem.

Instead of simply considering the average label density dΛ, we instead develop a best-

case heuristic based on looking at the ratio of positive to negative labels for each data point.

This heuristic serves as an upper bound to the true expected advantage, and thus we can use
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it to determine when we can safely skip training the generative model (see Algorithm 3).

Let cy(Λi) =
∑m

j=1 1
{
Λi, j = y

}
be the counts of labels of class y for xi, and assume that the

true labeling function weights lie within a fixed range, θ j ∈ [θmin, θmax] and have a mean θ̄.13

Then, define:

Φ(Λi, y) = 1

{
cy(Λi)θmax > c−y(Λi)θmin

}
Ã∗(Λ) =

1
n

n∑
i=1

∑
y∈±1

1 {y f1(Λi) ≤ 0}Φ(Λi, y)σ(2 fθ̄(Λi)y)

where σ(·) is the sigmoid function, fθ̄ is majority vote with all weights set to the mean θ̄,

and Ã∗(Λ) is the predicted modeling advantage used by our optimizer. Essentially, we are

taking the expected counts of instances in which a weighted majority vote could possibly

flip the incorrect predictions of unweighted majority vote under best case conditions, which

is an upper bound for the expected advantage:

Proposition 3. (Optimizer Upper Bound) Assume that the labeling functions have accu-

racy parameters (log-odds weights) θ j ∈ [θmin, θmax], and have E[θ] = θ̄. Then:

Ey,θ∗ [A∗ | Λ] ≤ Ã∗(Λ) (4.3)

Proof Sketch: We upper-bound the modeling advantage by the expected number of in-

stances in which WMV* is correct and MV is incorrect. We then upper-bound this by using

the best-case probability of the weighted majority vote being correct given (θmin, θmax).

We apply Ã∗ to a synthetic dataset and plot in Figure 4.6. Next, we compute Ã∗ for

the labeling matrices from experiments in Section 4.3, and compare with the empirical

advantage of the trained generative models (Table 4.1).14 We see that our approximate

13We fix these at defaults of (θmin, θ̄, θmax) = (0.5, 1.0, 1.5), which corresponds to assuming label-
ing functions have accuracies between 62% and 82%, and an average accuracy of 73%.

14 Note that in Section 4.3, due to known negative class imbalance in relation extraction problems,
we default to a negative value if majority vote yields a tie-vote label of 0. Thus our reported F1
score metric hides instances in which the generative model learns to correctly (or incorrectly) break
ties. In Table 4.1, however, we do count such instances as improvements over majority vote, as
these instances have an effect on the training of the end discriminative model (they yield additional
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Figure 4.7: The predicted (Ã∗) and actual (Aθ) advantage of using the generative labeling
model (GM) over majority vote (MV) on the CDR application as the number of LFs is
increased. At 9 LFs, the optimizer switches from choosing MV to choosing GM; this leads
to faster modeling in early development cycles, and more accurate results in later cycles.

quantity Ã∗ serves as a correct guide in all cases for determining which modeling strategy

to select, which for the mature applications reported on is indeed most often the generative

model. However, we see that while EHR and Chem have equivalent label densities, our

optimizer correctly predicts that Chem can be modeled with majority vote, speeding up

each pipeline execution by 1.8×.

Accelerating Initial Development Cycles

We find in our applications that the optimizer can save execution time especially during

the initial cycles of iterative development. To illustrate this empirically, in Figure 4.7 we

measure the modeling advantage of the generative model versus a majority vote of the

labeling functions on increasingly large random subsets of the CDR labeling functions. We

see that the modeling advantage grows as the number of labeling functions increases, and

that our optimizer approximation closely tracks it, providing evidence that the optimizer

training labels).



CHAPTER 4. SNORKEL: A SYSTEM FOR WEAK SUPERVISION 92

0.000.050.100.150.200.250.30
Correlation Threshold

0

10

20

30

40

50

Nu
m

be
r o

f C
or

re
la

tio
ns

20

30

40

50

60

70

80

Pr
ed

ict
iv

e 
Pe

rfo
rm

an
ce

 (F
1)

Simulated Labeling Functions
Performance
# of Correlations
Elbow Point

0.00.10.20.30.40.5
Correlation Threshold

0

100

200

300

400

Nu
m

be
r o

f C
or

re
la

tio
ns

67.0

67.5

68.0

68.5

69.0

69.5

70.0

Pr
ed

ict
iv

e 
Pe

rfo
rm

an
ce

 (F
1)

Chemical-Disease Labeling Functions

0.00.10.20.30.40.5
Correlation Threshold

0

1000

2000

3000

4000

Nu
m

be
r o

f C
or

re
la

tio
ns

55.0

55.5

56.0

56.5

57.0

57.5

Pr
ed

ict
iv

e 
Pe

rfo
rm

an
ce

 (F
1)

All User Study Labeling Functions

Figure 4.8: Predictive performance of the generative model and number of learned correla-
tions versus the correlation threshold ε. The selected elbow point achieves a good tradeoff

between predictive performance and computational cost (linear in the number of correla-
tions). Left: simulation of structure learning correcting the generative model. Middle: the
CDR task. Right: all user study labeling functions for the Spouses task.

can save execution time by choosing to skip the generative model and run majority vote

instead during the initial cycles of iterative development.

4.2.2 Modeling Structure

In this subsection, we consider modeling additional statistical structure beyond the conditionally-

independent model. We study the tradeoff between predictive performance and computa-

tional cost, and describe how to automatically select a good point in this tradeoff space.

Structure Learning We observe many Snorkel users writing labeling functions that are

statistically dependent. Examples we have observed include:

• Functions that are variations of each other, such as checking for matches against

similar regular expressions.

• Functions that operate on correlated inputs, such as raw tokens of text and their

lemmatizations.

• Functions that use correlated sources of knowledge, such as distant supervision from

overlapping knowledge bases.
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Modeling such dependencies is important because they affect our estimates of the true

labels. Consider the extreme case in which not accounting for dependencies is catastrophic:

Example 4.2.1. Consider a set of 10 labeling functions, where 5 are perfectly correlated,

i.e., they vote the same way on every data point, and 5 are conditionally independent given

the true label. If the correlated labeling functions have accuracy α = 50% and the un-

correlated ones have accuracy β = 99%, then the maximum likelihood estimate of their

accuracies according to the independent model is α̂ = 100% and β̂ = 50%.

Specifying a generative model to account for such dependencies by hand is impractical

for three reasons. First, it is difficult for non-expert users to specify these dependencies.

Second, as users iterate on their labeling functions, their dependency structure can change

rapidly, like when a user relaxes a labeling function to label many more candidates. Third,

the dependency structure can be dataset specific, making it impossible to specify a priori,

such as when a corpus contains many strings that match multiple regular expressions used

in different labeling functions. We observed users of early versions of Snorkel struggling

for these reasons to construct accurate and efficient generative models with dependencies.

We therefore seek a method that can quickly identify an appropriate dependency structure

from the labeling function outputs Λ alone.

Naively, we could include all dependencies of interest, such as all pairwise correlations,

in the generative model and perform parameter estimation. However, this approach is im-

practical. For 100 labeling functions and 10,000 data points, estimating parameters with

all possible correlations takes roughly 45 minutes. When multiplied over repeated runs

of hyperparameter searching and development cycles, this cost greatly inhibits labeling

function development. We therefore turn to the methods for automatically selecting which

dependencies to model without access to ground truth briefly reviewed in Section 3.4; while

both involve a manually set threshold hyperparameter which thereby induces a complexity-

accuracy tradeoff, for concreteness we focus on the first approach in Section 3.4.1. It uses a

pseudolikelihood estimator, which does not require any sampling or other approximations

to compute the objective gradient exactly. It is much faster than maximum likelihood es-

timation over all pairwise correlations, taking 15 seconds to select pairwise correlations to
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be modeled among 100 labeling functions with 10,000 data points. However, this approach

relies on a selection threshold hyperparameter ε which induces a tradeoff space between

predictive performance and computational cost.

Tradeoff Space

Such structure learning methods, whether pseudolikelihood or likelihood-based, crucially

depend on a selection threshold ε for deciding which dependencies to add to the gener-

ative model. Fundamentally, the choice of ε determines the complexity of the generative

model.15 We study the tradeoff between predictive performance and computational cost that

this induces. We find that generally there is an “elbow point” beyond which the number of

correlations selected—and thus the computational cost—explodes, and that this point is a

safe tradeoff point between predictive performance and computation time.

Predictive Performance At one extreme, a very large value of ε will not include any

correlations in the generative model, making it identical to the conditionally-independent

model. As ε is decreased, correlations will be added. At first, when ε is still high, only the

strongest correlations will be included. As these correlations are added, we observe that

the generative model’s predictive performance tends to improve. Figure 4.8, left, shows

the result of varying ε in a simulation where more than half the labeling functions are

correlated. After adding a few key dependencies, the generative model resolves the dis-

crepancies among the labeling functions. Figure 4.8, middle, shows the effect of varying ε

for the CDR task. Predictive performance improves as ε decreases until the model overfits.

Finally, we consider a large number of labeling functions that are likely to be correlated.

In the user study described in Section 4.4, participants wrote labeling functions for the

Spouses task. We combined all 125 of their functions and studied the effect of varying ε.

Here, we expect there to be many correlations since it is likely that users wrote redundant

functions. We see in Figure 4.8, right, that structure learning surpasses the best performing

individual’s generative model (50.0 F1).

15Specifically, ε is both the coefficient of the `1 regularization term used to induce sparsity, and
the minimum absolute weight in log scale that a dependency must have to be selected.
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Computational Cost Computational cost is correlated with model complexity. Since

learning in Snorkel is done with a Gibbs sampler, the overhead of modeling additional cor-

relations is linear in the number of correlations. The dashed lines in Figure 4.8 show the

number of correlations included in each model versus ε. For example, on the Spouses task,

fitting the parameters of the generative model at ε = 0.5 takes 4 minutes, and fitting its

parameters with ε = 0.02 takes 57 minutes. Further, parameter estimation is often run re-

peatedly during development for two reasons: (i) fitting generative model hyperparameters

using a development set requires repeated runs, and (ii) as users iterate on their labeling

functions, they must re-estimate the generative model to evaluate them.

Automatically Choosing a Model

Based on our observations, we seek to automatically choose a value of ε that trades off

between predictive performance and computational cost using the labeling functions’ out-

puts Λ alone. Including ε as a hyperparameter in a grid search over a development set is

generally not feasible because of its large effect on running time. We therefore want to

choose ε before other hyperparameters, without performing any parameter estimation. We

propose using the number of correlations selected at each value of ε as an inexpensive in-

dicator. The dashed lines in Figure 4.8 show that as ε decreases, the number of selected

correlations follows a pattern. Generally, the number of correlations grows slowly at first,

then hits an “elbow point” beyond which the number explodes, which fits the assumption

that the correlation structure is sparse. In all three cases, setting ε to this elbow point is

a safe tradeoff between predictive performance and computational cost. In cases where

performance grows consistently (left and right), the elbow point achieves most of the pre-

dictive performance gains at a small fraction of the computational cost. For example, on

Spouses (right), choosing ε = 0.08 achieves a score of 56.6 F1—within one point of the

best score—but only takes 8 minutes for parameter estimation. In cases where predictive

performance eventually degrades (middle), the elbow point also selects a relatively small

number of correlations, giving an 0.7 F1 point improvement and avoiding overfitting.

Performing structure learning for many settings of ε is inexpensive, especially since

the search needs to be performed only once before tuning the other hyperparameters. On

the large number of labeling functions in the Spouses task, structure learning for 25 values
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Algorithm 3 Modeling Strategy Optimizer

Input: Label matrix Λ ∈ (Y ∪ {∅})n×m,
advantage tolerance γ, structure search resolution η
Output: Modeling strategy

if Ã∗(Λ) < γ then return MV
Structures← [ ]

for i from 1 to 1
2η do

ε ← i · η
E ← LearnStructure(Λ, ε)
Structures.append(|E|, ε)

ε ← SelectElbowPoint(Structures) return GMε

of ε takes 14 minutes. On CDR, with a smaller number of labeling functions, it takes 30

seconds. Further, if the search is started at a low value of ε and increased, it can often be

terminated early, when the number of selected correlations reaches a low value. Selecting

the elbow point itself is straightforward. We use the point with greatest absolute difference

from its neighbors, but more sophisticated schemes can also be applied [Satopaa et al.,

2011]. Our full optimization algorithm for choosing a modeling strategy and (if necessary)

correlations is shown in Algorithm 3.

4.3 Experiments

We evaluate Snorkel by drawing on deployments developed in collaboration with users. We

report on two real-world deployments and four tasks on open-source data sets representa-

tive of other deployments. We then cover a user study in Section 4.4, and describe other

real-world applications of Snorkel in Section 4.5. Our evaluation is designed to support the

following three main claims:

• Snorkel outperforms distant supervision baselines. In distant supervision [Mintz

et al., 2009], one of the most popular forms of weak supervision used in practice,

an external knowledge base is heuristically aligned with input data to serve as noisy



CHAPTER 4. SNORKEL: A SYSTEM FOR WEAK SUPERVISION 97

training labels. By allowing users to easily incorporate a broader, more heteroge-

neous set of weak supervision sources—for example, pattern matching, structure-

based, and other more complex heuristics—Snorkel exceeds models trained via dis-

tant supervision by an average of 132%.

• Snorkel approaches hand supervision. We see that by writing tens of labeling

functions, we were able to approach or match results using hand-labeled training

data which took weeks or months to assemble, coming within 2.11% of the F1 score

of hand supervision on relation extraction tasks and an average 5.08% accuracy or

AUC on cross-modal tasks, for an average 3.60% across all tasks.

• Snorkel enables a new interaction paradigm. In Section 4.4, we measure Snorkel’s

efficiency and ease-of-use by reporting on a user study of biomedical researchers

from across the U.S. These participants learned to write labeling functions to extract

relations from news articles as part of a two-day workshop on learning to use Snorkel,

and matched or outperformed models trained on hand-labeled training data, showing

the efficiency of Snorkel’s process even for first-time users.

We now describe our results in detail. First, we describe the six applications that vali-

date our claims. We then show that Snorkel’s generative modeling stage helps to improve

the predictive performance of the discriminative model, demonstrating that it is 5.81%

more accurate when trained on Snorkel’s probabilistic labels versus labels produced by an

unweighted average of labeling functions. We also validate that the ability to incorporate

many different types of weak supervision incrementally improves results with an ablation

study.

Applications

To evaluate the effectiveness of Snorkel, we consider several real-world deployments and

tasks on open-source datasets that are representative of other deployments in information

extraction, medical image classification, and crowdsourced sentiment analysis. Summary

statistics of the tasks are provided in Table 4.2.
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Table 4.2: Number of labeling functions, fraction of positive labels (for binary classification
tasks), number of training documents, and number of training candidates for each task.

Task # LFs % Pos. # Docs # Candidates

Chem 16 4.1 1,753 65,398
EHR 24 36.8 47,827 225,607
CDR 33 24.6 900 8,272
Spouses 11 8.3 2,073 22,195
Radiology 18 36.0 3,851 3,851
Crowd 102 - 505 505

Table 4.3: Evaluation of Snorkel on relation extraction tasks from text. Snorkel’s generative
and discriminative models consistently improve over distant supervision, measured in F1,
the harmonic mean of precision (P) and recall (R). We compare with hand-labeled data
when available, coming within an average of 1 F1 point.

Distant Supervision Snorkel (Gen.) Snorkel (Disc.) Hand Supervision
Task P R F1 P R F1 Lift P R F1 Lift P R F1

Chem 11.2 41.2 17.6 78.6 21.6 33.8 +16.2 87.0 39.2 54.1 +36.5 - - -
EHR 81.4 64.8 72.2 77.1 72.9 74.9 +2.7 80.2 82.6 81.4 +9.2 - - -
CDR 25.5 34.8 29.4 52.3 30.4 38.5 +9.1 38.8 54.3 45.3 +15.9 39.9 58.1 47.3
Spouses 9.9 34.8 15.4 53.5 62.1 57.4 +42.0 48.4 61.6 54.2 +38.8 47.8 62.5 54.2

Discriminative Models One of the key bets in Snorkel’s design is that the trend of in-

creasingly powerful, open-source machine learning tools (e.g., models, pre-trained word

embeddings and initial layers, automatic tuners, etc.) will only continue to accelerate. To

best take advantage of this, Snorkel creates probabilistic training labels for any discrimina-

tive model with a standard loss function.

In the following experiments, we control for end model selection by using currently

popular, standard choices across all settings. For text modalities, we choose a bidirectional

long short term memory (LSTM) sequence model [Graves and Schmidhuber, 2005], and for

the medical image classification task we use a 50-layer ResNet [He et al., 2016] pre-trained

on the ImageNet object classification dataset [Deng et al., 2009]. Both models are imple-

mented in TensorFlow [Abadi et al., 2016] and trained using the Adam optimizer [Kingma

and Ba, 2014], with hyperparameters selected via random grid search using a small labeled

development set. Final scores are reported on a held-out labeled test set. See [Ratner et al.,
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Figure 4.9: Precision-recall curves for the relation extraction tasks. The top plots compare
a majority vote of all labeling functions, Snorkel’s generative model, and Snorkel’s dis-
criminative model. They show that the generative model improves over majority vote by
providing more granular information about candidates, and that the discriminative model
can generalize to candidates that no labeling functions label. The bottom plots compare
the discriminative model trained on an unweighted combination of the labeling functions,
hand supervision (when available), and Snorkel’s discriminative model. They show that the
discriminative model benefits from the weighted labels provided by the generative model,
and that Snorkel is competitive with hand supervision, particularly in the high-precision
region.

2017a] for additional details.

A key takeaway of the following results is that the discriminative model generalizes be-

yond the heuristics encoded in the labeling functions (as in Example 4.1.5). In Section 4.3,

we see that on relation extraction applications the discriminative model improves perfor-

mance over the generative model primarily by increasing recall by 43.15% on average. In

Section 4.3, the discriminative model classifies entirely new modalities of data to which the

labeling functions cannot be applied.

Data Set Details Additional information about the sizes of the datasets are included in

Table 4.4. Specifically, we report the size of the (unlabeled) training set and hand-labeled

development and test sets, in terms of number of candidates. Note that the development and

test sets can be orders of magnitude smaller than the training sets. Labeled development and
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Table 4.4: Number of candidates in the training, development, and test splits for each
dataset.

Task # Train. # Dev. # Test

Chem 65,398 1,292 1,232
EHR 225,607 913 604
CDR 8,272 888 4,620
Spouses 22,195 2,796 2,697
Radiology 3,851 385 385
Crowd 505 63 64

test sets were either used when already available as part of a benchmark dataset, or labeled

with the help of our collaborators, limited to several hours of labeling time maximum. Note

that test sets were labeled by individuals not involved with labeling function development

to keep the test sets properly blinded.

Relation Extraction from Text

We first focus on four relation extraction tasks on text data, as it is a challenging and

common class of problems that are well studied and for which distant supervision is often

considered. Predictive performance is summarized in Table 4.3, and precision-recall curves

are shown in Figure 4.9. We briefly describe each task.

Scientific Articles (Chem) With modern online repositories of scientific literature, such

as PubMed16 for biomedical articles, research results are more accessible than ever before.

However, actually extracting fine-grained pieces of information in a structured format and

using this data to answer specific questions at scale remains a significant open challenge for

researchers. To address this challenge in the context of drug safety research, Stanford and

U.S. Food and Drug Administration (FDA) collaborators used Snorkel to develop a system

for extracting chemical reagent and reaction product relations from PubMed abstracts. The

goal was to build a database of chemical reactions that researchers at the FDA can use

16https://www.ncbi.nlm.nih.gov/pubmed/

https://www.ncbi.nlm.nih.gov/pubmed/
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to predict unknown drug interactions. We used the chemical reactions described in the

Metacyc database [Caspi et al., 2016] for distant supervision.

Electronic Health Records (EHR) As patients’ clinical records increasingly become

digitized, researchers hope to inform clinical decision making by retrospectively analyz-

ing large patient cohorts, rather than conducting expensive randomized controlled studies.

However, much of the valuable information in electronic health records (EHRs)—such as

fine-grained clinical details, practitioner notes, etc.—is not contained in standardized med-

ical coding systems, and is thus locked away in the unstructured text notes sections. In

collaboration with researchers and clinicians at the U.S. Department of Veterans Affairs,

Stanford Hospital and Clinics (SHC), and the Stanford Center for Biomedical Informatics

Research, we used Snorkel to develop a system to extract structured data from unstructured

EHR notes. Specifically, the system’s task was to extract mentions of pain levels at precise

anatomical locations from clinician notes, with the goal of using these features to automat-

ically assess patient well-being and detect complications after medical interventions like

surgery. To this end, our collaborators created a cohort of 5,800 patients from SHC EHR

data, with visit dates between 1995 and 2015, resulting in 500K unstructured clinical doc-

uments. Since distant supervision from a knowledge base is not applicable, we compared

against regular-expression-based labeling previously developed for this task.

Chemical-Disease Relations (CDR) We used the 2015 BioCreative chemical-disease

relation dataset [Wei et al., 2015], where the task is to identify mentions of causal links

between chemicals and diseases in PubMed abstracts. We used all pairs of chemical and

disease mentions co-occurring in a sentence as our candidate set. We used the Comparative

Toxicogenomics Database (CTD) [P. et al., 2016] for distant supervision, and addition-

ally wrote labeling functions capturing language patterns and information from the context

hierarchy. To evaluate Snorkel’s ability to discover previously unknown information, we

randomly removed half of the relations in CTD and evaluated on candidates not contained

in the remaining half.
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Table 4.5: Evaluation on cross-modal experiments. Labeling functions that operate on
or represent one modality (text, crowd workers) produce training labels for models that
operate on another modality (images, text), and approach the predictive performance of
large hand-labeled training datasets.

Task Snorkel (Disc.) Hand Supervision

Radiology (AUC) 72.0 76.2
Crowd (Acc) 65.6 68.8

Spouses Our fourth task is to identify mentions of spouse relationships in a set of news

articles from the Signal Media dataset [Corney et al., 2016]. We used all pairs of person

mentions (tagged with SpaCy’s NER module17) co-occurring in the same sentence as our

candidate set. To obtain hand-labeled data for evaluation, we crowdsourced labels for the

candidates via Amazon Mechanical Turk, soliciting labels from three workers for each

example and assigning the majority vote. We then wrote labeling functions that encoded

language patterns and distant supervision from DBpedia [Lehmann et al., 2014].

Cross-Modal: Images & Crowdsourcing

In the cross-modal setting, we write labeling functions over one data modality (e.g., a

text report, or the votes of crowd workers) and use the resulting labels to train a classifier

defined over a second, totally separate modality (e.g., an image or the text of a tweet). This

demonstrates the flexibility of Snorkel, in that the labeling functions (and by extension, the

generative model) do not need to operate over the same domain as the discriminative model

being trained. Predictive performance is summarized in Table 4.5.

Abnormality Detection in Lung Radiographs (Rad) In many real-world radiology set-

tings, there are large repositories of image data with corresponding narrative text reports,

but limited or no labels that could be used for training an image classification model. In

this application, in collaboration with radiologists, we wrote labeling functions over the

text radiology reports, and used the resulting labels to train an image classifier to detect

abnormalities in lung X-ray images. We used a publicly available dataset from the OpenI

17https://spacy.io/

https://spacy.io/
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biomedical image repository18 consisting of 3,851 distinct radiology reports—composed

of unstructured text and Medical Subject Headings (MeSH)19 codes—and accompanying

X-ray images. Note that we briefly describe a more extensive version of this study, done

subsequently in collaboration with the Stanford Radiology department, in Section 4.5.

Crowdsourcing (Crowd) We trained a model to perform sentiment analysis using crowd-

sourced annotations from the weather sentiment task from Crowdflower.20 In this task,

contributors were asked to grade the sentiment of often-ambiguous tweets relating to the

weather, choosing between five categories of sentiment. Twenty contributors graded each

tweet, but due to the difficulty of the task and lack of crowd worker filtering, there were

many conflicts in worker labels. We represented each crowd worker as a labeling function—

showing Snorkel’s ability to subsume existing crowdsourcing modeling approaches—and

then used the resulting labels to train a text model over the tweets, for making predictions

independent of the crowd workers.

Effect of Generative Modeling

An important question is the significance of modeling the accuracies and correlations of the

labeling functions on the end predictive performance of the discriminative model (versus in

Section 4.2.1, where we only considered the effect on the accuracy of the generative model).

We compare Snorkel with a simpler pipeline that skips the generative modeling stage and

trains the discriminative model on an unweighted average of the labeling functions’ out-

puts. Table 4.6 shows that the discriminative model trained on Snorkel’s probabilistic labels

consistently predicts better, improving 5.81% on average. These results demonstrate that

the discriminative model effectively learns from the additional signal contained in Snorkel’s

probabilistic training labels over simpler modeling strategies.
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Table 4.6: Comparison between training the discriminative model on the labels estimated
by the generative model, versus training on the unweighted average of the LF outputs.
Predictive performance gains show that modeling LF noise helps.

Disc. Model on
Task Unweighted LFs Disc. Model Lift

Chem 48.6 54.1 +5.5
EHR 80.9 81.4 +0.5
CDR 42.0 45.3 +3.3
Spouses 52.8 54.2 +1.4
Crowd (Acc) 62.5 65.6 +3.1
Rad. (AUC) 67.0 72.0 +5.0

Scaling with Unlabeled Data

One of the most exciting potential advantages of using a programmatic supervision ap-

proach as in Snorkel is the ability to incorporate additional unlabeled data, which is often

cheaply available. The theoretical results in Sections 3.2.2 and 3.3.3 characterizing the

data programming approach used predicts that discriminative model generalization risk

(i.e., predictive performance on the held-out test set) should improve with additional unla-

beled data, at the same asymptotic rate as in traditional supervised methods with respect to

labeled data. That is, with a fixed amount of effort writing labeling functions, we could then

get improved discriminative model performance simply by adding more unlabeled data.

We validate this theoretical prediction empirically on three of our datasets (Figure 4.10).

We see that by adding additional unlabeled data—in these datasets, candidates from addi-

tional documents—we get significant improvements in the end discriminative model per-

formance, with no change in the labeling functions. For example, in the EHR experi-

ment, where we had access to a large unlabeled corpus, we were able to achieve signif-

icant gains (8.1 F1 score points) in going from 100 to 50 thousand documents. Further

empirical validation of these strong unlabeled scaling results can be found in follow-up

work using Snorkel in a range of application domains, including aortic valve classification

18http://openi.nlm.nih.gov/
19https://www.nlm.nih.gov/mesh/meshhome.html
20https://www.crowdflower.com/data/weather-sentiment/

http://openi.nlm.nih.gov/
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.crowdflower.com/data/weather-sentiment/
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Figure 4.10: The increase in end model performance (measured in F1 score) for different
amounts of unlabeled data, measured in the number of candidates. We see that as more
unlabeled data is added, the performance increases.

in MRI videos [Fries et al., 2019], industrial-scale content classification at Google [Bach

et al., 2019], fine-grained named entity recognition [Ratner et al., 2019b], radiology image

triage [Khandwala et al., 2017], and others, covered in part in Section 4.5. Based on both

this empirical validation, and feedback from Snorkel users in practice, we see this ability to

leverage available unlabeled data without any additional user labeling effort as a significant

advantage of the proposed weak supervision approach.

Labeling Function Type Ablation

We also examine the impact of different types of labeling functions on end predictive per-

formance, using the CDR application as a representative example of three common cate-

gories of labeling functions:

• Text Patterns: Basic word, phrase, and regular expression labeling functions.

• Distant Supervision: External knowledge bases mapped to candidates, either directly

or filtered by a heuristic.
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Table 4.7: Labeling function ablation study on CDR. Adding different types of labeling
functions improves predictive performance.

LF Type P R F1 Lift

Text Patterns 42.3 42.4 42.3
+ Distant Supervision 37.5 54.1 44.3 +2.0
+ Structure-based 38.8 54.3 45.3 +1.0

Table 4.8: Self-reported skill levels—no previous experience (New), beginner (Beg.), in-
termediate (Int.), and advanced (Adv.)—for all user study participants.

Subject New Beg. Int. Adv.

Python 0 3 8 4
Machine Learning 5 1 4 5
Info. Extraction 2 6 5 2

Text Mining 3 6 4 2

• Structure-Based: Labeling functions expressing heuristics over the context hierarchy,

e.g., reasoning about position in the document or relative to other candidates.

We show an ablation in Table 4.7, sorting by stand-alone score. We see that distant supervi-

sion adds recall at the cost of some precision, as we would expect, but ultimately improves

F1 score by 2 points; and that structure-based labeling functions, enabled by Snorkel’s

context hierarchy data representation, add an additional F1 point.

4.4 User Study

We conducted a formal study of Snorkel to (i) evaluate how quickly subject matter expert

(SME) users could learn to write labeling functions, and (ii) empirically validate the core

hypothesis that writing labeling functions is more time-efficient than hand-labeling data.

Users were given instruction on Snorkel, and then asked to write labeling functions for the

Spouses task described in the previous subsection.
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Participants In collaboration with the Mobilize Center [Ku et al., 2015], an NIH-funded

Big Data to Knowledge (BD2K) center, we distributed a national call for applications to

attend a two-day workshop on using Snorkel for biomedical knowledge base construction.

Selection criteria included a strong biomedical project proposal and little-to-no prior ex-

perience using Snorkel. In total, 15 researchers21 were invited to attend out of 33 team

applications submitted, with varying backgrounds in bioinformatics, clinical informatics,

and data mining from universities, companies, and organizations around the United States.

The education demographics included 6 bachelors, 4 masters, and 5 Ph.D. degrees. All

participants could program in Python, with 80% rating their skill as intermediate or better;

40% of participants had little-to-no prior exposure to machine learning; and 53-60% had

no prior experience with text mining or information extraction applications (Table 4.8).

Protocol The first day focused entirely on labeling functions, ranging from theoretical

motivations to details of the Snorkel API. Over the course of 7 hours, participants were in-

structed in a classroom setting on how to use and evaluate models developed using Snorkel.

Users were presented with 4 tutorial Jupyter notebooks providing skeleton code for eval-

uating labeling functions, along with a small labeled development candidate set, and were

given 2.5 hours of dedicated development time in aggregate to write their labeling func-

tions. All workshop materials are available online.22

Baseline To compare our users’ performance against models trained on hand-labeled

data, we collected a large hand-labeled dataset via Amazon Mechanical Turk (the same

set used in the previous subsection). We then split this into 15 datasets representing 7

hours worth of hand-labeling time each—based on the crowd-worker average of 10 sec-

onds per label—simulating the alternative scenario where users skipped both instruction

and labeling function development sessions and instead spent the full day hand-labeling

data. Partitions were created by drawing a uniform random sample of 2500 labels from the

total Amazon Mechanical Turk-generated Spouse dataset. For 15 such random samples,

21One participant declined to write labeling functions, so their score is not included in our analy-
sis.

22https://github.com/HazyResearch/snorkel/tree/master/tutorials/workshop

https://github.com/HazyResearch/snorkel/tree/master/tutorials/workshop
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Figure 4.11: Predictive performance attained by our 14 user study participants using
Snorkel. The majority (57%) of users matched or exceeded the performance of a model
trained on 7 hours (2,500 instances) of hand-labeled data.

the mean F1 score was 20.9 (min:11.7, max: 29.5). Scaling to 55 random partitions, the

mean F1 score was 22.5 (min:11.7, max: 34.1).

Results Our key finding is that labeling functions written in Snorkel, even by SME users,

can match or exceed a traditional hand-labeling approach. The majority (8) of subjects

matched or outperformed these hand-labeled data models. The average Snorkel user’s

score was 30.4 F1, and the average hand-supervision score was 20.9 F1. The best perform-

ing user model scored 48.7 F1, 19.2 points higher than the best supervised model using

hand-labeled data. The worst participant scored 12.0 F1, 0.3 points higher that the lowest

hand-labeled model. The full distribution of scores by participant, and broken down by

participant background, compared against the baseline models trained with hand-labeled

data are shown in Figures 4.11 and 4.13 respectively.
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Figure 4.12: The profile of the best performing user by F1 score, was a MS or Ph.D. degree
in any field, strong Python coding skills, and intermediate to advanced experience with
machine learning. Prior experience with text mining added no benefit.

Additional Details We note that participants only needed to create a fairly small set of

labeling functions to achieve the reported performances, writing a median of 10 labeling

functions (with a minimum of 2, and a maximum of 15). In general, these labeling functions

had simple form; for example, two from our user study:

def LF fictional (c):
fictional = { " played the husband ", " played the wife", " plays the husband ", " plays

the wife", " acting role" }
if re. search (" | ".join( fictional ), c. get parent ().text , re.I):

return −1
else :

return 0

def LF family (c):
family = { "son", " daughter ", " father ", "dad", " mother ", "mom", " children ", " child
", " twins ", " cousin ", " friend ", " girlfriend ", " boyfriend ", " sister ", " brother " }
if len( other . intersection ( get between tokens (c))) > 0:

return −1
else :

return 0
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Figure 4.13: We bucketed labeling functions written by user study participants into three
types—pattern-based, distant supervision, and complex. Participants tended to mainly
write pattern-based labeling functions, but also universally expressed more complex heuris-
tics as well.

Participant labeling functions had a median length of 2 lines of Python code (min:2,

max:12). We grouped participant-designed functions into three types:

1. Pattern-based (regular expressions, small term sets)

2. Distant Supervision (interacts with a knowledge base)

3. Complex (misc. heuristics, e.g. counting PERSON named entity tags, comparing last

names of a pair of PERSON entities)

On average, 58% of participant’s labeling functions where pattern-based (min:25%, max:

82%). The best labeling function design strategy used by participants appeared to be defin-

ing small term sets correlated with positive and negative labels. Participants with the lowest

F1 scores tended to design labeling functions with low coverage of negative labels. This

is a common difficulty encountered when designing labeling functions, as writing heuris-

tics for negative examples is sometimes counter-intuitive. Users with the highest overall

F1 scores wrote 1-2 high coverage negative labeling functions and several medium-to-high

accuracy positive labeling functions.
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We note that the best single participant’s pipeline achieved an F1 score of 48.7, com-

pared to the authors’ score of 54.2. User study participants favored pattern-based labeling

functions; the most common design was creating small positive and negative term sets. Au-

thor labeling functions were similar, but were more accurate overall p (e.g., better pattern

matching).

4.5 Real-World Applications

One major goal of the work in this thesis—and in particular, the work in designing and

building Snorkel as an open-source framework—was to make modern machine learning

tools accessible to subject matter experts and machine learning developers alike, so that

they could apply these tools to impactful applications. In part, we validate the success of

this accessibility objective via user studies such as the one detailed in the previous subsec-

tion. However, a bigger goal was to get Snorkel actually deployed in impactful, real-world

scientific and production settings. We highlight a sample of the public deployments of

Snorkel in medicine, science, and industry below. Additionally, more information can be

found at snorkel.org, and in the linked open-source code repository.

4.5.1 Knowledge Base Construction

One of the initial focuses of Snorkel, as described in this chapter, was for information

(or relation) extraction use cases, often referred to as knowledge base construction (KBC)

[Ratner et al., 2017b; Ratner and Ré, 2018]. In the broader task of KBC—of which relation

extraction, as detailed in the previous subsections, is a sub-task—the goal is ultimately to

construct a queryable, structured repository of knowledge that can then be used in a variety

of downstream tasks. We briefly review the applications already covered in Section 4.3,

and then review several additional applications of interest.

snorkel.org
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Extracting Information from the Scientific Literature As reviewed in Section 4.3, we

applied Snorkel to the challenge of extracting chemical reagent and reaction product rela-

tion mentions from PubMed abstracts in the context of drug safety research, in collabora-

tion with researchers from Stanford and the U.S. Food and Drug Administration (FDA).

More generally, Snorkel has been used to extract chemical-disease relations (see Section

4.3), genome-phenotype relations [Birgmeier et al., 2017], and other relations and entities

[Fries et al., 2017] of scientific interest from the literature.

Building a Genome-Wide Association Study Knowledge Base We highlight one par-

ticular application of Snorkel to information extraction from the scientific literature, in

which Snorkel was used to power a new system, GWASkb [Kuleshov et al., 2019], for

automatically extracting genome-wide association study (GWAS) findings from the sci-

entific literature. GWASkb collected over 6, 000 associations from open-access publica-

tions with an estimated recall of 60-80% and precision of 78-94% (available at http:

//gwaskb.stanford.edu/), demonstrating the potential for automated curation of a cor-

nerstone information resource in the biomedical and genomics communities [Kuleshov

et al., 2019].

Extraction from Electronic Health Records for Device Monitoring Medical device

surveillance is a major challenge to manufacturers, regulatory agencies, and healthcare

providers alike. Recently, building on the initial application described in Section 4.3, Calla-

han et. al. [Callahan et al., 2019] report on applying Snorkel to extract hip replacement

implant details and reports of complications and pain from electronic health records (EHRs)

with up to 97.4% F1 score, improving by 12.7-53.0% over previous rule-based approaches,

and detecting over six times as many complication events compared to using structured

data alone, demonstrating the potential of machine learning models—driven by Snorkel—

for EHR patient and device monitoring [Callahan et al., 2019].

http://gwaskb.stanford.edu/
http://gwaskb.stanford.edu/
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Extraction from Semi-Structured or Richly-Formatted Data Snorkel has also been

used as part of a recent system, Fonduer23, aimed at extracting information from semi-

structured or richly-formatted data, e.g. data involving textual, structural, tabular, and

visual information [Wu et al., 2018]. Fonduer achieved an average 41 F1 score point im-

provement over expert-curated knowledge bases in four real-world applications covering

PDF electronics part sheets extraction, advertising, paleontology, and genomics, and was

additionally deployed in production at a major technology company’s web product.

4.5.2 Medical Imaging & Monitoring

Another area where labeling of training data is a major bottleneck is in medical imaging:

commodity image classification models (e.g. convolutional neural networks) have proven

capable of achieving high performance with little out-of-the-box modification, however

require massive labeled training datasets that require both highly-specialized domain ex-

pertise and institution-specific private data access in order to label by hand [Dunnmon et al.,

2018; Gulshan et al., 2016; Esteva et al., 2017; Bychkov et al., 2018]. Increasingly, this

same trend has extended to other medical monitoring modalities, such as EEG and other

time series signals [Acharya et al., 2018]. We briefly highlight two ways in which Snorkel

has been applied to these modalities in this domain. First, we highlight several cross-modal

use cases (as mentioned already in Section 4.3), where e.g. clinician users write labeling

functions over e.g. text reports available at training time, and use the resulting labels to

train a discriminative model over e.g. images which will be the only data modality avail-

able at test time. Second, we highlight use cases in which Snorkel users can write labeling

functions over a complex modality such as image or video data, often using pre-computed

features as building blocks over which to write labeling functions [Varma et al., 2017].

Cross-Modal Medical Triaging In many medical applications—for example, triaging

of new aging or EEG studies to prioritize for human inspection—standard deep learning

architectures can achieve high-performance results nearly out-of-the-box [Dunnmon et al.,

2018], if sufficient hand-labeled training data is present. However, while unlabeled data is

23https://github.com/HazyResearch/fonduer

https://github.com/HazyResearch/fonduer
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(a) CXR: Example normal (left) and abnormal
(right) chest radiographs.

(b) EXR: Example normal (left) and abnormal
(right) knee radiographs.

(c) HCT: Example HCT signals denoting no
hemorrhage (top) and hemorrhage (bottom).

(d) EEG: Example EEG signals denoting no
seizure (top) and seizure onset (bottom).

Figure 4.14: Example target modality data for the four applications surveyed, which
demonstrates the breadth of applicability of the proposed cross-modal weak supervision
approach; auxiliary modality data (text reports) not pictured. Panel (a) shows single 2-D
chest radiographs (CXR), panel (b) shows examples of knee extremity radiographs (EXR)
drawn from 2-D radiograph series, panel (c) shows 32 slices from 3-D head CT scans
(HCT) with and without hemorrhage, and panel (d) shows 19-channel electroencephalog-
raphy (EEG) signals with and without evidence of seizure onset. Figure from [Dunnmon
et al., 2019].
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Figure 4.15: A cross-modal data programming pipeline for rapidly training medical clas-
sifiers. A clinician writes labeling functions over the auxiliary modality, in this case a text
report, which are available along with the primary modality, in this case a medical image,
at train time. These labeling functions are combined using Snorkel’s label model, and op-
tionally used to train an LSTM model over the text report. The resulting labels are used to
train a model over the target modality. At test time, the end model receives only the target
modality as input, and returns predictions. Figure from [Dunnmon et al., 2019].

often available—for example, case studies in a hospital picture archiving system—labeling

them according to the schema of interest is often prohibitively expensive, due to require-

ments of domain expertise and private patient health information (PHI) clearance. As a re-

sult, weak supervision approaches like those supported by Snorkel are an appealing option-

however, it is often difficult for subject matter experts like clinicians to write labeling func-

tions efficiently over complex medical modalities like images and time series data.

Instead, we often have access to an auxiliary modality at training time only—for exam-

ple, unstructured text reports—which users can easily and rapidly write labeling functions

over. The resulting labels can then be used to train a model over the target modality that will

be present at test time—for example, medical images (Fig. 4.15). In a recent application

of Snorkel to four medical triaging problems spanning chest (CXR) and knee extremity

(EXR) radiograph triage, intracranial hemorrhage identification on head CT (HCT), and

seizure onset detection on electroencephalography (EEG) (Fig. 4.14), we find that the pro-

posed cross-modal Snorkel pipeline, using only person-days of physician and developer

time, yields models that on average outperforms models trained with physician-months

of hand-labeled data by 10.25 points ROC-AUC; comes within 1.75 points ROC-AUC of

models trained with physician-years of hand-labeled data; and improves by an average

6 points ROC-AUC over a baseline weak supervision approach [Dunnmon et al., 2019].

Overall, we see that a weak supervision approach using Snorkel leads to a 97% average time



CHAPTER 4. SNORKEL: A SYSTEM FOR WEAK SUPERVISION 116

savings—suggesting that modern weak supervision approaches such as those described in

this thesis may enable significantly more rapid development and deployment of clinically-

useful machine learning models.

Classification of Aortic Valve Malformations In one recent example of the second ap-

proach to weak supervision over more complex modalities—enabling users to write label-

ing functions directly over modalities like images and video using pre-computed features as

building blocks [Varma et al., 2017]—Snorkel was used to help classify unlabeled cardiac

MRI sequences for aortic valve malformations, with significant relative gains over using

either a smaller hand-labeled training set or a baseline weak supervision approach [Fries

et al., 2019].

4.5.3 Industrial Use Case Studies

Since introducing it as an open-source framework, Snorkel has been used in various in-

dustry settings by companies both large and small [Bach et al., 2019; Bringer et al., 2019;

Mallinar et al., 2018]. We briefly highlight two of the publicly-reported use cases, which

emphasize two different angles on using organizational knowledge and personnel to weakly

supervise machine learning models.

Google: Snorkel DryBell In a recent paper [Bach et al., 2019] and blog post24, we report

on several internal deployments of Snorkel at Google. We focus on two aspects that gen-

eralize fa beyond Google: first, the use of organizational knowledge, or existing internal

weak supervision sources that can be used and represented as labeling functions, and then

combined using Snorkel; and second, the idea, similar to the cross-modal settings above,

of using internal non-servable resources in the labeling functions—e.g. features too slow,

private, or otherwise inaccessible to serve in production—in order to train models defined

over disjoint servable feature sets. We show that Snorkel can lead to classifiers with com-

parable quality to ones trained with tens of thousands of hand-labeled examples over three

content and real-time event classification applications at Google.

24https://ai.googleblog.com/2019/03/harnessing-organizational-knowledge-for.

html

https://ai.googleblog.com/2019/03/harnessing-organizational-knowledge-for.html
https://ai.googleblog.com/2019/03/harnessing-organizational-knowledge-for.html
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Figure 4.16: An overview of the Snorkel DryBell system. (1) Snorkel DryBell provides
a library of templated C++ classes, each of which defines a MapReduce pipeline for exe-
cuting a labeling function with the necessary services, such as natural language processing
(NLP). (2) Engineers write methods for the MapReduce pipeline to determine a vote for
each example’s label, using Google resources. (3) Snorkel DryBell executes the labeling
function binary on Google’s distributed compute environment. (4) Snorkel DryBell loads
the labeling functions’ output into its generative model, which combines them into proba-
bilistic training labels for use by production systems. Figure from [Bach et al., 2019].

Intel: Snorkel Osprey In a collaboration with Intel, we reported on Snorkel Osprey, an

extension to Snorkel focused on supporting non-programmers via configurable templates

that decouple business logic from code and machine learning [Bringer et al., 2019]. In

Osprey, members of Intel’s Sales & Marketing Group were able to use machine learning

for three event-monitoring applications without programming, by entering high-level in-

formation into a declarative spreadsheet-based interface, leading to average gains of 18.5

points in precision and 28.5 points of recall at a fraction of the cost, compared to prior

hand-labeled and weak supervision approaches taken.

4.6 Related Work

This section is an overview of techniques for managing weak supervision, many of which

are subsumed in Snorkel. We also contrast it with related forms of supervision.
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Combining Weak Supervision Sources The main challenge of weak supervision is how

to combine multiple sources. For example, if a user provides two knowledge bases for

distant supervision, how should a data point that matches only one knowledge base be

labeled? Some researchers have used multi-instance learning to reduce the noise in weak

supervision sources [Riedel et al., 2010; Hoffmann et al., 2011], essentially modeling the

different weak supervision sources as soft constraints on the true label, but this approach is

limited because it requires using a specific end model that supports multi-instance learning.

Researchers have therefore considered how to estimate the accuracy of label sources

without a gold standard with which to compare—a classic problem [Dawid and Skene,

1979]—and combine these estimates into labels that can be used to train an arbitrary end

model. Much of this work has focused on crowdsourcing, in which workers have unknown

accuracy [Dalvi et al., 2013; Joglekar et al., 2015; Zhang et al., 2016b]. Such methods

use generative probabilistic models to estimate a latent variable—the true class label—

based on noisy observations. Other methods use generative models with hand-specified

dependency structures to label data for specific modalities, such as topic models for text

[Alfonseca et al., 2012] or denoising distant supervision sources [Takamatsu et al., 2012;

Roth and Klakow, 2013b]. Other techniques for estimating latent class labels given noisy

observations include spectral methods [Parisi et al., 2014]. Snorkel is distinguished from

these approaches because its generative model supports a wide range of weak supervision

sources, and it learns the accuracies and correlation structure among weak supervision

sources without ground truth data.

Other Forms of Supervision Work on semi-supervised learning considers settings with

some labeled data and a much larger set of unlabeled data, and then leverages various

domain- and task-agnostic assumptions about smoothness, low-dimensional structure, or

distance metrics to heuristically label the unlabeled data [Chapelle et al., 2009]. Work

on active learning aims to automatically estimate which data points are optimal to label,

thereby hopefully reducing the total number of examples that need to be manually an-

notated [Settles, 2012]. Transfer learning considers the strategy of repurposing models

trained on different datasets or tasks where labeled training data is more abundant [Pan

and Yang, 2010]. Another type of supervision is self-training [Scudder, 1965; Agrawala,
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1970] and co-training [Blum and Mitchell, 1998], which involves training a model or pair

of models on data that they labeled themselves. Weak supervision is distinct in that the

goal is to solicit input directly from SMEs, however at a higher level of abstraction and/or

in an inherently noisier form. Snorkel is focused on managing weak supervision sources,

but combing its methods with these other types of supervision is straightforward.

Related Data Management Problems Researchers have considered related problems in

data management, such as data fusion [Dong and Srivastava, 2015; Rekatsinas et al., 2017b]

and truth discovery [Li et al., 2015]. In these settings, the task is to estimate the reliability

of data sources that provide assertions of facts and determine which facts are likely true.

Many approaches to these problems use probabilistic graphical models that are related to

Snorkel’s generative model in that they represent the unobserved truth as a latent variable,

e.g., the latent truth model [Zhao et al., 2012]. Our setting differs in that labeling functions

assign labels to user-provided data, and they may provide any label or abstain, which we

must model. Work on data fusion has also explored how to model user-specified corre-

lations among data sources [Pochampally et al., 2014]. Snorkel automatically identifies

which correlations among labeling functions to model.



Chapter 5

Multi-Task Weak Supervision

In Chapter 4, we introduced Snorkel, a system for enabling users to programmatically label

and manage training datasets, built around the data programming paradigm introduced in

Chapter 3. However, in many real-world settings, users increasingly have not just one but

multiple, often related, classification tasks that they would like to apply machine learning

to. In certain large technology companies, the number of modeling tasks already reaches

into the hundreds, and given the increasing ubiquity of machine learning, many other or-

ganizations are likely to follow suit. In this chapter, motivated by this trend, we extend

the Snorkel system and data programming approach to the multi-task setting, where a user

has multiple, potentially related tasks and would like to realize efficiencies by reasoning

jointly across them. Concretely, we extend data programming to handle multiple tasks re-

lated by an optional user-provided task graph, and create a new multi-task system, Snorkel

MeTaL1, for enabling users to easily build and train multi-task learning models. We show

empirically, using several hierarchical multi-task text classification problems, that using

this approach and system leads to average improvements of 20.2 points in accuracy over

a traditional supervised approach, 6.8 points over a weak supervision baseline, and 4.1

points over single-task data programming and Snorkel. We use this to further demonstrate

that especially in complex, multi-task settings, programmatically building, managing, and

modeling training datasets can be a powerful and effective interface to modern machine

learning tools.

1Merged into Snorkel (https://snorkel.org) as of version 0.9.
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Motivation As mentioned above, the motivation for Snorkel MeTaL stems from the in-

creasing prevalence of users with multiple related classification tasks, and in turn, of multi-

task approaches to solve them. The high level idea of modeling multiple tasks jointly in

an attempt to realize sample complexity efficiencies and learn more robust representations,

generally referred to as multi-task learning [Caruana, 1993], has of late gathered renewed

popularity in the setting of modern deep learning architectures. However, while these multi-

task models in theory reduce the overall number of labeled data points needed per task to

achieve a given quality level, they still in general need large labeled training sets- and now,

for not one but several tasks. Thus, we return again to the same challenge of requiring large

labeled training sets–this time in the more complex multi-task setting.

Snorkel MeTaL To overcome this challenge, we propose Snorkel MeTaL, a framework

for modeling and integrating weak supervision sources–represented by labeling functions–with

different unknown accuracies, correlations, and pertaining to different possibly related

tasks. Of these three challenges, the first two were approached in Chapters 3 and 4; how-

ever, we now describe an approach that additionally handles the third one of multi-task

labeling functions. In Snorkel MeTaL, we view each labeling function as labeling one of

several related sub-tasks of a problem—we refer to this as the multi-task weak supervi-

sion setting. We then show that given the dependency structure of the labeling functions,

we extend the approach presented in Chapter 3.3 to use their observed agreement and dis-

agreement rates to recover their unknown accuracies. Moreover, we exploit the relationship

structure between tasks to observe additional cross-task agreements and disagreements, ef-

fectively providing extra signal from which to learn. We extend the matrix completion-style

algorithm in Section 3.3 to learn and model the accuracies of diverse multi-task supervision

sources, and then combine their labels to produce training data that can be used to super-

vise arbitrary models, including increasingly popular multi-task learning models [Caruana,

1993; Ruder, 2017]. Compared to the approaches in Chapters 3 and 4, however, which only

handled the single-task setting, we demonstrate that our multi-task aware approach leads to

average gains of 4.1 points in accuracy in our experiments.

We validate our framework on three fine-grained classification tasks in named entity

recognition, relation extraction, and medical document classification, for which we have



CHAPTER 5. MULTI-TASK WEAK SUPERVISION 122

Figure 5.1: A schematic of the Snorkel MeTaL pipeline. To generate training data for an
end model, such as a multi-task model as in our experiments, the user inputs a task graph
Gtask defining the relationships between task labels y1, ..., yt; a set of unlabeled data points
XU ; a set of multi-task labeling functions which each output a vector λ j of task labels for a
data point x ∈ XU ; and the dependency structure between these labeling functions, Gλ. We
train a label model to learn the accuracies of the labeling functions, outputting a vector of
probabilistic training labels ỹ for training the end model.

diverse weak supervision sources at multiple levels of granularity, represented as multi-

task labeling functions. We show that by modeling them as labeling hierarchically-related

sub-tasks and utilizing unlabeled data, we can get an average improvement of 20.2 points

in accuracy over a traditional supervised approach, 6.8 points over a basic majority vot-

ing weak supervision baseline, and 4.1 points over single-task data programming. From a

practical standpoint, we argue that our framework represents an efficient way for practition-

ers to supervise modern machine learning models, including new multi-task variants, for

complex tasks by opportunistically using the diverse weak supervision sources available to

them.

Outline of Chapter In this chapter we describe Snorkel MeTaL, an extension of the

Snorkel system and data programming method introduced in Chapters 3 and 4 to the multi-

task setting:

• In Section 5.1, we start by describing the architecture and syntax of multi-task weak

supervision in Snorkel MeTaL.

• In Section 5.2, we describe extending data programming to the multi-task setting,

highlighting the sub-case of hierarchically-related tasks.

• In Section 5.3, we briefly describe the system architecture of Snorkel MeTaL.
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• Finally, in Section 5.4 we present empirical validation of Snorkel MeTaL.

We note that Snorkel MeTaL was made available as an open source software package,

although its functionality has since been merged into the Snorkel (snorkel.org) reposi-

tory.

5.1 Using Multi-Task Weak Supervision

As modern machine learning models become both more complex and more performant on a

range of tasks, developers increasingly interact with them by programmatically generating

noisier or weak supervision. In Chapter 4 we described data programming, an approach for

effectively programming machine learning models using the following pipeline: First, users

provide one or more weak supervision sources as labeling functions, which are applied to

unlabeled data to generate a set of noisy labels. These labels may overlap and conflict;

we model and combine them via a label model in order to produce a final set of training

labels. These labels are then used to train some discriminative model, which we refer to as

the end model. This programmatic weak supervision approach can utilize sources ranging

from heuristic rules to other models, and in this way can also be viewed as a pragmatic and

flexible form of multi-source transfer learning.

In this chapter, we focus on one motivating type of multi-task setting where there are

several hierarchically-related tasks, which we often refer to as having different levels of

granularity. Importantly, we note that Snorkel MeTaL can be relevant even if a user only

ultimately cares about producing a classifier for a single final task. In fact, we find in prac-

tice that users often want to be able to leverage diverse sources of supervision pertaining

to multiple tasks (often referred to as auxiliary tasks in the multi-task learning literature),

but ultimately only care about producing a classifier for one primary task. We consider an

example:

Example 5.1.1. A developer wants to train a fine-grained Named Entity Recognition (NER)

snorkel.org
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Figure 5.2: An example fine-grained entity classification problem, where labeling functions
label three sub-tasks of different granularities: (i) Person vs. Organization, (ii) Doctor
vs. Lawyer (or N/A), (iii) Hospital vs. Office (or N/A). The example weak supervision
sources, expressed as labeling functions in Python, use a pattern heuristic and dictionary
lookup respectively.

model to classify mentions of entities in the news (Figure 5.2). She has a multitude of avail-

able weak supervision sources which she believes have relevant signal for her problem—

for example, pattern matchers, dictionaries, and pre-trained generic NER taggers. How-

ever, it is unclear how to properly use and combine them: some of them label phrases

coarsely as PERSON versus ORGANIZATION, while others classify specific fine-grained types

of people or organizations, with a range of unknown accuracies. In our framework, she

can represent them as labeling tasks of different granularities—e.g. y1 = {Person, Org},

y2 = {Doctor, Lawyer, N/A}, y3 = {Hospital, Office, N/A}, where the label N/A applies,

for example, when the type-of-person task is applied to an organization.

In our proposed multi-task supervision setting, the user specifies a set of structurally-

related tasks, and then provides a set of multi-task labeling functions which are user-defined

functions that either label each data point or abstain for each task, and may have some

user-specified dependency structure. These labeling functions can be arbitrary black-box

functions, and can thus subsume a range of weak supervision approaches relevant to both

text and other data modalities, including use of pattern-based heuristics, distant supervi-

sion [Mintz et al., 2009], crowd labels, other weak or biased classifiers, declarative rules

over unsupervised feature extractors [Varma et al., 2017], and more. Our goal is to esti-

mate the unknown accuracies of these labeling functions, combine their outputs, and use

the resulting labels to train an end model.
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5.2 Modeling Multi-Task Weak Supervision

The core technical challenge of the multi-task weak supervision setting is recovering the

unknown accuracies of labeling functions given their dependency structure and a schema

of the tasks they label, but without any ground-truth labeled data. We now describe how

the matrix completion-style data programming algorithm from Section 3.3 can be extended

for recovering the accuracies in this multi-task setting.

Problem Setup Let x ∈ X be a data point and y = [y1, y2, . . . , yt]T be a vector of categor-

ical task labels, yi ∈ {1, . . . , ki}, corresponding to t tasks, where (x, y) is drawn i.i.d. from a

distributionD.

The user provides a specification of how these tasks relate to each other; we denote

this schema as the task structure Gtask. The task structure expresses logical relationships

between tasks, defining a feasible set of label vectors Y, such that y ∈ Y. For example,

Figure 5.2 illustrates a hierarchical task structure over three tasks of different granularities

pertaining to a fine-grained entity classification problem. Here, the tasks are related by

logical subsumption relationships: for example, if y2 = DOCTOR, this implies that y1 =

PERSON, and that y3 = N/A, since the task label y3 concerns types of organizations, which

is inapplicable to persons. Thus, in this task structure, y = [PERSON, DOCTOR, N/A]T is in

Y while y = [PERSON, N/A, HOSPITAL]T is not. While task structures are often simple to

define, as in the previous example, or are explicitly defined by existing resources—such as

ontologies or graphs—we note that if no task structure is provided, our approach becomes

equivalent to modeling the t tasks separately, a baseline we consider in the experiments.

In our setting, rather than observing the true label y, we have access to m multi-task

labeling functions which emit label vectors λ j that contain labels for some subset of the t

tasks. Let ∅ denote a null or abstaining label, and let the coverage set c j ⊆ {1, . . . , t} be

the fixed set of tasks for which the jth labeling function emits non-zero labels, such that

λ j ∈ Yc j . For convenience, we let c0 = {1, . . . , t} so that Yc0 = Y. For example, a labeling

function from our previous example might have a coverage set c j = {1, 3}, emitting coarse-

grained labels such as λ j = [PERSON, 0, N/A]T . Note that labeling functions often label

multiple tasks implicitly due to the constraints of the task structure; for example, a labeling
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Figure 5.3: An example of a labeling function dependency graph Gλ (left) and its junction
tree representation (right), where y is a vector-valued random variable with a feasible set
of values, y ∈ Y. Here, the output of labeling functions 1 and 2 are modeled as dependent
conditioned on y. This results in a junction tree with singleton separator sets, y. Here, the
observable cliques are O = {λ1, λ2, λ3, λ4, {λ1, λ2}} ⊂ C.

function that labels types of people (y2) also implicitly labels people vs. organizations

(y1 = PERSON), and types of organizations (as y3 = N/A). Thus labeling functions tailored

to different tasks still have agreements and disagreements; we use this additional cross-task

signal in our approach.

The user also provides the conditional dependency structure of the labeling functions

as a graph Gλ = (V, E), where V = {y, λ1, λ2, . . . , λm} (Figure 5.3). Specifically, if (λi, λ j)

is not an edge in Gλ, this means that λi is independent of λ j conditioned on y and the other

labeling function labels. Note that if Gλ is unknown, it can be estimated using statistical

techniques such as [Bach et al., 2017]. Importantly, we do not know anything about the

strengths of the correlations in Gλ, or the labeling functions’ accuracies.

Our overall goal is to apply the set of labeling functions to an unlabeled dataset XU

consisting of n data points, then use the resulting weakly-labeled training set to supervise

an end model hw : X 7→ Y (Figure 5.1). This weakly-labeled training set will contain

overlapping and conflicting labels, from labeling functions with unknown accuracies and

correlations. To handle this, we will learn a label model pθ(y|λ), parameterized by a vector

of labeling function correlations and accuracies θ, which for each data point x takes as

input the noisy labels λ = {λ1, . . . , λm} and outputs a single probabilistic label vector ỹ.

Succinctly, given a user-provided tuple (XU , λ,Gλ,Gtask), our key technical challenge is

recovering the parameters θ without access to ground truth labels y.

Modeling Multi-Task Sources To learn a label model over multi-task labeling functions,

we introduce sufficient statistics over the random variables in Gλ, as in Section 3.3. To
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recall: let C be the set of cliques in Gλ, and define an indicator random variable for the

event of a clique C ∈ C taking on a set of values yC:

ψ(C, yC) = 1 {∩i∈CVi = (yC)i} ,

where (yC)i ∈ Yci . We define ψ(C) ∈ {0, 1}
∏

i∈C(|Yci |−1) as the vector of indicator random

variables for all combinations of all but one of the labels emitted by each variable in clique

C—thereby defining a minimal set of statistics—and define ψ(C) accordingly for any set

of cliques C ⊆ C. Then θ = E
[
ψ(C̄)

]
is the vector of sufficient statistics for the label model

we want to learn.

We work with two simplifying conditions in this section, as described in Section 3.3.2

(where the binary, single-task setting was primarily considered). First, we consider the

setting where Gλ is triangulated and has a junction tree representation with singleton sepa-

rator sets. If this is not the case, edges can always be added to Gλ to make this setting hold;

otherwise, we describe how our approach can directly handle non-singleton separator sets

in Section 3.3.

Second, we use a simplified class-conditional model of the noisy labeling process, as

discussed in Section 3.3, where we learn one accuracy parameter for each label value λ j

that each labeling function emits. This is equivalent to assuming that a labeling function

may have a different accuracy on each different class, but that if it emits a certain label

incorrectly, it does so uniformly over the different true labels y. This is a more expressive

model than the commonly considered one, where each labeling function is modeled by a

single accuracy parameter, e.g. in [Dawid and Skene, 1979; Ratner et al., 2016].

Our Approach Given the above setup, we can now apply the matrix completion-style

approach as detailed in Section 3.3.2. We proceed as before, now using our multi-task en-

coding of the problem (Algorithm 4). In this setting, we also use the function ExpandTied,

which is a simple algebraic expansion of tied parameters according to the simplified class-

conditional model used in this section.
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Algorithm 4 Labeling Function Accuracy Estimation for Multi-Task Weak Supervision

Input: Observed labels Ê
[
ψ(O)

]
, covariance Σ̂O, and correlation sparsity structure Ω

CheckIdentifiability(Ω) . Preliminary operations
Ê

[
ψ(y)

]
← ClassBalance(Ê

[
ψ(O)

]
, Σ̂O,Ω)

ẑ← argminz

∣∣∣∣∣∣Σ̂−1
O + zzT

∣∣∣∣∣∣
Ω

. Solve the masked matrix completion problem

ĉ← Σ−1
S

(1 + ẑT Σ̂Oẑ) . Recover the estimated label model parameters, θ̂
Σ̂OS ← Σ̂Oẑ/

√
ĉ

θ̂′ ← Σ̂OS + Ê
[
ψ(y)

]
Ê

[
ψ(O)

]
return ExpandTied(θ̂′)

Hierarchical Multi-Task Supervision As an illustrative example, we now consider the

specific case of hierarchical multi-task supervision, which can be thought of as consist-

ing of coarser- and finer-grained labels, or alternatively higher- and lower-level labels, and

provides a way to supervise e.g. fine-grained classification tasks at multiple levels of gran-

ularity. Specifically, consider a task label vector y = [y1, . . . , yt]T as before, this time

with ys ∈ {N/A, 1, . . . , ks}, where we will explain the meaning of the special value N/A

shortly. We then assume that the tasks ys are related by a task hierarchy which is a hier-

archy Gtask = (V, E) with vertex set V = {y1, y2, . . . , yt} and directed edge set E. The task

structure reflects constraints imposed by higher level (more general) tasks on lower level

(more specific) tasks. The following example illustrates a simple tree task structure:

Example 5.2.1. Let y1 classify a data point x as either a PERSON (y1 = 1) or BUILDING

(y1 = 2). If y1 = 1, indicating that x represents a PERSON, then y2 can further label x as a

DOCTOR or NON-DOCTOR. y3 is used to distinguish between HOSPITAL and NON-HOSPITAL

in the case that y1 = 2. The corresponding graph Gtask is shown in Figure 5.4. If y1 = 2,

then task y2 is not applicable, since y2 is only suitable for persons; in this case, y2 takes

the value N/A. In this way the task hierarchy defines a feasible set of task vector values:

y = [1, 1, N/A]T , [1, 2, N/A]T , [2, N/A, 1]T , [2, N/A, 2]T are valid, while e.g. y = [1, 1, 2]T is

not.

As in the example, for certain configurations of y’s, the parent tasks logically constrain

the one or more of the children tasks to be irrelevant, or rather, to have inapplicable label
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y1

y2 y3

Figure 5.4: Example task hierarchy Gtask for a three-task classification problem. Task y1

classifies a data point x as a PERSON or BUILDING. If y1 classifies x as a PERSON, y2 is
used to distinguish between DOCTOR and NON-DOCTOR. Similarly, if y2 classifies x as a
BUILDING, y3 is used to distinguish between HOSPITAL and NON-HOSPITAL. Tasks y2, y3

are more specific, or finer-grained tasks, constrained by their parent task y1.

values. In this case, the task takes on the value N/A. In Example 5.2.1, we have that if

y1 = 1, representing a building, then y2 is inactive (since X corresponds to a building). We

define the symbol N/A (for incompatible) for this scenario. More concretely, let N(yi) =

{y j : (y j, yi) ∈ E} be the in-neighborhood of yi. Then, the values of the members of N(yi)

determine whether yi = N/A, i.e., 1
{
y j = N/A

}
is deterministic conditioned on N(yi).

Hierarchical Multi-Task Sources Observe that in the mutually-exclusive task hierarchy

just described, the value of a descendant task label yd determines the values of all other

task labels in the hierarchy besides its descendants. For example, in Example 5.2.1, a label

y2 = 1 =⇒ (y1 = 1, y3 = N/A); in other words, knowing that x is a DOCTOR also implies

that x is a PERSON and not a BUILDING.

For a labeling function λ j with coverage set c j, the label it gives to the lowest task in

the task hierarchy which is non-zero and non-N/A determines the entire label vector output

by λ j. E.g. if the lowest task that λ j labels in the hierarchy is y1 = 1, then this implies that

it outputs vector [1, 0, N/A]T . Thus, in this sense, we can think of each labeling functions

λ j as labeling one specific task in the hierarchy, and thus can talk about coarser- and finer-

grained labeling functions.

Reduced-Rank Form: Modeling Local Accuracies In some cases, we can make slightly

different modeling assumptions that reflect the nature of the task structure, and additionally

can result in reduced-rank forms of our model. In particular, for the hierarchical setting in-

troduced here, we can divide the statistics θ into local and global subsets, and for example
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focus on modeling only the local ones to once again reduce to rank-one form.

To motivate with our running example: a finer-grained labeling function that labels

DOCTOR versus NON-DOCTOR probably is not accurate on the building type subtask; we

can model this labeling function using one accuracy parameter for the former label set

(the local accuracy) and a different (or no parameter) for the global accuracy on irrelevant

tasks. More specifically, for cliques involving λ j, we can model pθ(λ j, y) for all y with only

non-N/A values in the coverage set of λ j using a single parameter, and call this the local

accuracy; and we can either model θ for the other y using one or more other parameters,

or simply set it to a fixed value and not model it, to reduce to rank one form, as we do in

the experiments. In particular, this allows us to capture our observation in practice that if a

developer is writing a labeling function to distinguish between labels at one sub-tree, they

are probably not designing or testing it to be accurate on any of the other subtrees.

5.3 Snorkel MeTaL: A System for Weak Supervision

To help validate the utility of the proposed multi-task weak supervision approach, we de-

signed and built an open source framework, Snorkel MeTaL, extending Snorkel to the

multi-task setting2 Snorkel MeTaL implements the core functionality of the multi-task

weak supervision pipeline outlined in the preceding sections (see Figure 5.1), provides

basic multi-task schema definition and data management classes, and defines a new auto-

compiled multi-task learning model architecture.

In Snorkel MeTaL, the user first provides a task graph to (optionally) define the relation

structure of the task labels; this task graph is then used to automatically define the structure

of an end multi-task deep learning model compiled in PyTorch, using the following three

configurable building blocks:

• Input Module: To support multiple types of input data, Snorkel MeTaL’s end model

accepts a plug-in input module of arbitrary complexity, with parameters either pre-

trained or jointly learned at test-time, which maps from a raw data point to a vector

2https://github.com/HazyResearch/metal; note that as of the date of this thesis’s publi-
cation, the core functionality of Snorkel MeTaL has been merged into Snorkel (snorkel.org)

https://github.com/HazyResearch/metal
snorkel.org
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NER RE Doc Average

Gold (Dev) 63.7 ± 2.1 28.4 ± 2.3 62.7 ± 4.5 51.6
MV 76.9 ± 2.6 43.9 ± 2.6 74.2 ± 1.2 65.0
DP [Ratner et al., 2016] 78.4 ± 1.2 49.0 ± 2.7 75.8 ± 0.9 67.7

Snorkel MeTaL 82.2 ± 0.8 56.7 ± 2.1 76.6 ± 0.4 71.8

Table 5.1: Performance Comparison of Different Supervision Approaches. We com-
pare the micro accuracy (avg. over 10 trials) with 95% confidence intervals on the primary
(finest-grained) task of an end multi-task model trained using the training labels from the
hand-labeled development set (Gold Dev), hierarchical majority vote (MV), data program-
ming (DP), and our approach (Snorkel MeTaL).

of pre-specified dimension. Snorkel MeTaL includes pre-configured input modules

for modalities like text and image data.

• Intermediate Module: MeTaL then constructs a hierarchy of several intermediate

modules—linear layers by default, but easily replaced with more complex modules.

• Task Heads: Finally, as in many standard MTL network designs, each task has a

separate linear layer attached to the shared layers.

In the initial prototype of Snorkel MeTaL, we provide extra support for hierarchical

task graphs as a special case by optionally attaching task heads to the intermediate layer

corresponding to their level in the hierarchy, and optionally also pass predictions between

task heads according to this graph structure; for details see [Ratner et al., 2018].

5.4 Experiments

We validate our approach on three fine-grained, multi-task classification problems—entity

classification, relation classification, and document classification—where weak supervi-

sion sources are available at both coarser and finer-grained levels (e.g. as in Figure 5.2).

We evaluate the predictive accuracy on the primary (finest-grained) tasks of end models

supervised with training data produced by several approaches, finding that our approach

outperforms traditional hand-labeled supervision by 20.2 points, a baseline majority vote
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weak supervision approach by 6.8 points, and the approach presented in Chapter 3 that is

not multi-task-aware by 4.1 points. For performance on all tasks, see [Ratner et al., 2019b].

Datasets Each dataset consists of a large (3k-63k) amount of unlabeled training data

and a small (200-350) amount of labeled data which we refer to as the development set,

which we use for (a) a traditional supervision baseline, and (b) for hyperparameter tuning

of the end model (see [Ratner et al., 2019b] for additional details). The average number of

labeling functions per task was 13, with sources expressed as Python functions, averaging 4

lines of code and comprising a mix of pattern matching heuristics, external knowledge base

or dictionary lookups, and pre-trained models. In all three cases, we primarily evaluate

the performance on the finest-grained tasks (i.e. the union of the leaf level tasks); for

performance on all tasks, see [Ratner et al., 2019b].

Named Entity Recognition (NER): We represent a fine-grained named entity recognition

problem—tagging entity mentions in text documents—as a hierarchy of three sub-tasks

over the OntoNotes dataset [Weischedel et al., 2011]: y1 ∈ {Person,Organization},

y2 ∈ {Businessperson,Other Person,N/A}, y3 ∈ {Company,Other Org,N/A}, where again we

use N/A to represent “not applicable”. We evaluate the primary task of classifying the

finest-grained labels, i.e. the union of y2 and y3.

Relation Extraction (RE): We represent a relation extraction problem—classifying entity-

entity relation mentions in text documents—as a hierarchy of six sub-tasks which either

concern labeling the subject, object, or subject-object pair of a possible or candidate rela-

tion in the TACRED dataset [Zhang et al., 2017b]. For example, we might label a relation

as having a Person subject, Location object, and Place-of-Residence relation type. We

evaluate the primary task of classifying the finest-grained labels, i.e. the relation types.

Medical Document Classification (Doc): We represent a radiology report triaging (i.e.

document classification) problem from the OpenI dataset [National Institutes of Health,

2017] as a hierarchy of three sub-tasks: y1 ∈ {Acute,Non-Acute}, y2 ∈ {Urgent,Emergent,N/A},

y3 ∈ {Normal,Non-Urgent,N/A}. We evaluate the primary task of classifying the finest-

grain labels, i.e. the union of the leaf-level tasks y2 and y3.
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End Model Protocol Our goal was to test the performance of a basic multi-task end

model using training labels produced by various different approaches. We use an architec-

ture consisting of a shared bidirectional LSTM input layer with pre-trained embeddings,

shared linear intermediate layers, and a separate final linear layer (“task head”) for each

task. Hyperparameters were selected with an initial search for each application, then fixed.

Core Validation We compare the accuracy of the end multi-task model trained with la-

bels from our approach versus those from three baseline approaches (Table 5.1):

• Traditional Supervision [Gold (Dev)]: We train the end model using the small hand-

labeled development set.

• Hierarchical Majority Vote [MV]: We use a hierarchical majority vote of the labeling

function labels: i.e. for each data point, for each task we take the majority vote and

proceed down the task tree accordingly. This procedure can be thought of as a hard

decision tree, or a cascade of if-then statements as in a rule-based approach.

• Data Programming [DP]: We model each task separately using the data program-

ming approach for denoising weak supervision (Chapter 3).

In all settings, we used the same end model architecture as described above. Note that while

we choose to model these problems as consisting of multiple sub-tasks, we evaluate with

respect to the broad primary task of fine-grained classification (for subtask-specific scores,

see [Ratner et al., 2019b]). We observe in Table 5.1 that our approach of leveraging multi-

granularity weak supervision leads to large gains—20.2 points over traditional supervision

with the development set, 6.8 points over hierarchical majority vote, and 4.1 points over

data programming.

Ablations We examine individual factors:

Joint Task Modeling: Next, we use our algorithm to estimate the accuracies of sources

for each task separately, to observe the empirical impact of modeling the multi-task setting

jointly as proposed. We see average gains of 1.3 points in accuracy (see Appendix).

End Model Generalization: Though not possible in many settings, in our experiments

we can directly apply the label model to make predictions. In Table 5.6, we show that
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Figure 5.5: In the OntoNotes dataset, end model accuracy scales with the amount of avail-
able unlabeled data.

# Train LM EM Gain

NER 62,547 75.2 82.2 7.0
RE 9,090 55.3 57.4 2.1
Doc 2,630 75.6 76.6 1.0

Figure 5.6: Using the label model (LM) predictions directly versus using an end model
trained on them (EM).

the end model improves performance by an average 3.4 points in accuracy, validating that

the models trained do indeed learn to generalize beyond the provided weak supervision.

Moreover, the largest generalization gain of 7 points in accuracy came from the dataset

with the most available unlabeled data (n=63k), demonstrating scaling consistent with the

predictions of our theory (Fig. 5.5). This ability to leverage additional unlabeled data and

more sophisticated end models are key advantages of the weak supervision approach in

practice.



Chapter 6

Data Augmentation

In Chapters 3, 4, and 5, we described methods and systems for enabling users to program-

matically label unlabeled data to create large labeled training datasets for machine learning.

However, labeling is just one of the common and critical operations of building and man-

aging training datasets, and only one way of injecting weak supervision into the machine

learning pipeline.

In this chapter, we present an approach and system for supporting another critical op-

eration in building training datasets, data augmentation, in which labeled training datasets

are expanded or augmented by transforming data points in class label-preserving ways; for

example, the canonical example is randomly rotating images. We propose a formalization

of this critical but generally ad hoc process in which users again provide simple, black-box

function–in this setting, transformation functions that incrementally transform a labeled

training point–which we then automatically model and combine using a different genera-

tive modeling approach which again leverages unlabeled data. We implement a system for

data augmentation around our approach, TANDA1, which is packaged as an open source

software system that interfaces with TensorFlow and other machine learning frameworks.

In practice we find that our approach enables users to more easily develop and apply

data augmentation strategies across multiple data modalities, and empirically, we find that

given a fixed set of user-developed transformation functions, our approach for automati-

cally tuning and composing them leads to an average 2.9 points of accuracy gain across

1https://github.com/HazyResearch/tanda
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three competitive tasks, as compared to a standard heuristic baseline. We view this ap-

proach as another, complementary way for users to practically develop machine learning

applications by programmatically building, managing, and modeling training datasets. To

this end, the data augmentation approach presented above is also included as a core opera-

tion in the open source Snorkel software package2.

Motivation Modern machine learning models, such as deep neural networks, may have

billions of free parameters and accordingly require massive labeled data sets for training. In

most settings, labeled data is not available in sufficient quantities to avoid overfitting to the

training set. The technique of artificially expanding labeled training sets by transforming

data points in ways which preserve class labels – known as data augmentation – is one crit-

ical and effective tool for combatting this labeled data scarcity problem. Data augmentation

can be seen as a form of weak supervision, providing a way for practitioners to leverage

their knowledge of invariances in a task or domain. And indeed, data augmentation is cited

as essential to nearly every state-of-the-art result in image classification [Ciresan et al.;

Dosovitskiy et al., 2015; Graham, 2014; Sajjadi et al., 2016] (see [Ratner et al., 2017c]),

and is becoming increasingly common in other modalities as well [Lu et al., 2006].

Even on well studied benchmark tasks, however, the choice of data augmentation strat-

egy is known to cause large variances in end performance and be difficult to select [Graham,

2014; Dosovitskiy et al., 2015], with papers often reporting their heuristically found param-

eter ranges [Ciresan et al.]. In practice, it is often simple to formulate a large set of primitive

transformation operations, but time-consuming and difficult to find the parameterizations

and compositions of them needed for state-of-the-art results. In particular, many transfor-

mation operations will have vastly different effects based on parameterization, the set of

other transformations they are applied with, and even their particular order of composition.

For example, brightness and saturation enhancements might be destructive when applied

together, but produce realistic images when paired with geometric transformations.

Given the difficulty of searching over this configuration space, the de facto norm in prac-

tice consists of applying one or more transformations in random order and with random pa-

rameterizations selected from hand-tuned ranges. Recent lines of work attempt to automate

2As of version 0.9.
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data augmentation entirely, but either rely on large quantities of labeled data [Baluja and

Fischer, 2017; Mirza and Osindero, 2014], restricted sets of simple transformations [Fawzi

et al., 2016; Hauberg et al., 2016], or consider only local perturbations that are not informed

by domain knowledge [Baluja and Fischer, 2017; Miyato et al., 2015] (see Section 6.4). In

contrast, our aim is to directly and flexibly leverage domain experts’ knowledge of invari-

ances as a valuable form of weak supervision in real-world settings where labeled training

data is limited.

Automating Data Augmentation In this chapter, we present a new method for data aug-

mentation that directly leverages user domain knowledge in the form of transformation

operations, and automates the difficult process of composing and parameterizing them.

We formulate the problem as one of learning a generative sequence model over black-box

transformation functions (TFs): user-specified operators representing incremental trans-

formations to data points that need not be differentiable nor deterministic. For example,

TFs could rotate an image by a small degree, swap a word in a sentence, or translate a

segmented structure in an image (Fig. 6.1). We then design a generative adversarial ob-

jective [Goodfellow et al., 2014a] which allows us to train the sequence model to produce

transformed data points which are still within the data distribution of interest, using unla-

beled data. Because the TFs can be stochastic or non-differentiable, we present a reinforce-

ment learning-based training strategy for this model. The learned model can then be used

to perform data augmentation on labeled training data for any end discriminative model.

Given the flexibility of our representation of the data augmentation process, we can

apply our approach in many different domains, and on different modalities including both

text and images. On a real-world mammography image task, we achieve a 3.4 accuracy

point boost above randomly composed augmentation by learning to appropriately com-

bine standard image TFs with domain-specific TFs derived in collaboration with radiology

experts. Using novel language model-based TFs, we see a 1.4 F1 boost over heuristic

augmentation on a text relation extraction task from the ACE corpus. And on a 10%-

subsample of the CIFAR-10 dataset, we achieve a 4.0 accuracy point gain over a standard

heuristic augmentation approach and are competitive with comparable semi-supervised ap-

proaches. Additionally, we show empirical results suggesting that the proposed approach
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is robust to misspecified TFs. Our hope is that the proposed method will be of practical

value to practitioners and of interest to researchers, so we have open-sourced the code at

https://github.com/HazyResearch/tanda.

Outline of Chapter In this chapter we describe a paradigm for building data augmenta-

tion strategies as policies over user-provided transformation functions, and an approach for

automatically learning to tune and compose them using unlabeled data:

• In Section 6.1, we start by describing the representation of data augmentation strate-

gies as sequences of incremental, user-provided transformation functions, and the

model we use to tune and compose them.

• In Section 6.2, we describe a generative adversarial approach for learning the model

over data augmentation sequences using unlabeled data.

• In Section 6.3, we describe experiments validating the proposed approach across

image and text datasets.

• Finally, in Section 6.4 we briefly review related work.

We note that the above approach is available as an open source software framework

at https://github.com/HazyResearch/tanda, and has also been partially integrated

into Snorkel (https://snorkel.org) as of version 0.9.

6.1 Modeling Setup and Motivation

In the standard data augmentation setting, our aim is to expand a labeled training set by

leveraging knowledge of class-preserving transformations. For a practitioner with do-

main expertise, providing individual transformations is straightforward. However, high

performance augmentation techniques use compositions of finely tuned transformations to

achieve state-of-the-art results [Dosovitskiy et al., 2015; Ciresan et al.; Graham, 2014], and

heuristically searching over this space of all possible compositions and parameterizations

for a new task is often infeasible. Our goal is to automate this task by learning to compose

https://github.com/HazyResearch/tanda
https://github.com/HazyResearch/tanda
https://snorkel.org
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Figure 6.1: Three examples of transformation functions (TFs) in different domains: Two
example sequences of incremental image TFs applied to CIFAR-10 images (left); a condi-
tional word-swap TF using an externally trained language model and specifically targeting
nouns (NN) between entity mentions (E1,E2) for a relation extraction task (middle); and
an unsupervised segmentation-based translation TF applied to mass-containing mammog-
raphy images (right).

and parameterize a set of user-specified transformation operators in ways that are diverse

but still preserve class labels.

In our method, transformations are modeled as sequences of incremental user-specified

operations, called transformation functions (TFs) (Fig. 6.1). Rather than making the strong

assumption that all the provided TFs preserve class labels, as existing approaches do, we

assume a weaker form of class invariance which enables us to use unlabeled data to learn

a generative model over transformation sequences. We then propose two representative

model classes to handle modeling both commutative and non-commutative transforma-

tions.

6.1.1 Augmentation as Sequence Modeling

In our approach, we represent transformations as sequences of incremental operations. In

this setting, the user provides a set of K TFs, τi : X 7→ X, i ∈ [1,K]. Each TF performs an

incremental transformation: for example, hi could rotate an image by five degrees, swap a

word in a sentence, or move a segmented tumor mass around a background mammography

image (see Fig. 6.1). In order to accommodate a wide range of such user-defined TFs, we

treat them as black-box functions which need not be deterministic nor differentiable.

This formulation gives us a tractable way to tune both the parameterization and com-

position of the TFs in a discretized but fine-grained manner. Our representation can be

thought of as an implicit binning strategy for tuning parameterizations – e.g. a 15 degree
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Figure 6.2: A high-level diagram of our method. Users input a set of transformation func-
tions τ1, ..., τK and unlabeled data. A generative adversarial approach is then used to train a
null class discriminator, D∅, and a generator, G, which produces TF sequences τs1 , ..., τsL .
Finally, the trained generator is used to perform data augmentation for an end discrimina-
tive model D f .

rotation might be represented as three applications of a five-degree rotation TF. It also pro-

vides a direct way to represent compositions of multiple transformation operations. This

is critical as a multitude of state-of-the-art results in the literature show the importance of

using compositions of more than one transformations per image [Dosovitskiy et al., 2015;

Ciresan et al.; Graham, 2014], which we also confirm experimentally in Section 6.3.

6.1.2 Weakening the Class-Invariance Assumption

Any data augmentation technique fundamentally relies on some assumption about the trans-

formation operations’ relation to the class labels. Previous approaches make the unrealistic

assumption that all provided transformation operations preserve class labels for all data

points. That is,

y(τsL ◦ . . . ◦ τs1(x)) = y(x) (6.1)

for label mapping function y, any sequence of TF indices s1, ..., sL, and all data points x.

This assumption puts a large burden of precise specification on the user, and based on

our observations, is violated by many real-world data augmentation strategies. Instead, we

consider a weaker modeling assumption. We assume that transformation operations will

not map between classes, but might destructively map data points out of the distribution of



CHAPTER 6. DATA AUGMENTATION 141

Plane

Auto

Bird

Original Plane Auto Bird Cat Deer

Figure 6.3: Our modeling assumption is that transforma-
tions may map out of the natural distribution of interest,
but will rarely map between classes. As a demonstration,
we take images from CIFAR-10 (each row) and randomly
search for a transformation sequence that best maps them
to a different class (each column), according to a trained
discriminative model. The matches rarely resemble the tar-
get class but often no longer look like “normal” images at
all. Note that we consider a fixed set of user-provided TFs,
not adversarially selected ones.

Figure 6.4: Some example
transformed images gener-
ated using an augmentation
generative model trained
using our approach. Note
that this is not meant as a
comparison to Fig. 6.3.

interest entirely:

y(τsL ◦ . . . ◦ τs1(x)) ∈ {y(x), y∅} (6.2)

where y∅ represents an out-of-distribution null class. Intuitively, this weaker assumption is

motivated by the categorical image classification setting, where we observe that transfor-

mation operations provided by the user will almost never turn, for example, a plane into a

car, but may often turn a plane into an indistinguishable “garbage” image (Fig. 6.3). We

are the first to consider this weaker invariance assumption, which we believe more closely

matches various practical data augmentation settings of interest. In Section 6.3, we also

provide empirical evidence that this weaker assumption is useful in binary classification

settings and over modalities other than image data. Critically, it also enables us to learn a

model of TF sequences using unlabeled data alone.
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6.1.3 Minimizing Null Class Mappings Using Unlabeled Data

Given assumption (6.2), our objective is to learn a model Gθ which generates sequences of

TF indices s ∈ {1,K}L with fixed length L, such that the resulting TF sequences τs1 , . . . , τsL

are not likely to map data points into y∅. Crucially, this does not involve using the class

labels of any data points, and so we can use unlabeled data. Our goal is then to minimize

the probability of a generated sequence mapping unlabeled data points into the null class,

with respect to θ:

J∅ = Es∼Gθ

[
Ex∼U

[
P(y(τsL ◦ . . . ◦ τs1(x)) = y∅)

]]
(6.3)

whereU is some distribution of unlabeled data.

Generative Adversarial Objective In order to approximate P(y(τsL ◦ . . . ◦ τs1(x)) = y∅),

we jointly train the generator Gθ and a discriminative model D∅φ using a generative adver-

sarial network (GAN) objective [Goodfellow et al., 2014a], now minimizing with respect

to θ and maximizing with respect to φ:

J̃∅ = Es∼Gθ

[
Ex∼U

[
log(1 − D∅φ(τsL ◦ . . . ◦ τs1(x)))

]]
+ Ex′∼U

[
log(D∅φ(x′))

]
(6.4)

As in the standard GAN setup, the training procedure can be viewed as a minimax game

in which the discriminator’s goal is to assign low values to transformed, out-of-distribution

data points and high values to real in-distribution data points, while simultaneously, the

generator’s goal is to generate transformation sequences which produce data points that are

indistinguishable from real data points according to the discriminator. For D∅φ, we use an

all-convolution CNN as in [Radford et al., 2015]. For further details, see the Appendix of

[Ratner et al., 2017c].

Diversity Objective An additional concern is that the model will learn a variety of null

transformation sequences (e.g. rotating first left than right repeatedly). Given the poten-

tially large state-space of actions, and the black-box nature of the user-specified TFs, it

seems infeasible to hard-code sets of inverse operations to avoid. To mitigate this, we
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instead consider a second objective term:

Jd = Es∼Gθ

[
Ex∼U

[
d(τsL ◦ . . . ◦ τs1(x), x)

]]
(6.5)

where d : X × X 7→ R is some distance function. For d, we evaluated using both distance

in the raw input space, and in the feature space learned by the final pre-softmax layer of the

discriminator D∅φ. Combining eqns. 6.4 and 6.5, our final objective is then J = J̃∅ + αJ−1
d

where α > 0 is a hyperparameter. We minimize J with respect to θ and maximize with

respect to φ.

6.1.4 Modeling Transformation Sequences

We now consider two model classes for Gθ:

Independent Model We first consider a mean field model in which each sequential TF

is chosen independently. This reduces our task to one of learning K parameters, which

we can think of as representing the task-specific “accuracies” or “frequencies” of each TF.

For example, we might want to learn that elastic deformations or swirls should only rarely

be applied to images in CIFAR-10, but that small rotations can be applied frequently. In

particular, a mean field model also provides a simple way of effectively learning stochas-

tic, discretized parameterizations of the TFs. For example, if we have a TF representing

five-degree rotations, Rotate5Deg, a marginal value of PGθ
(Rotate5Deg) = 0.1 could be

thought of as roughly equivalent to learning to rotate 0.5L degrees on average.

State-Based Model There are important cases, however, where the independent repre-

sentation learned by the mean field model could be overly limited. In many settings, cer-

tain TFs may have very different effects depending on which other TFs are applied with

them. As an example, certain similar pairs of image transformations might be overly lossy

when applied together, such as a blur and a zoom operation, or a brighten and a saturate

operation. A mean field model could not represent such disjunctions as these. Another

scenario where an independent model fails is where the TFs are non-commutative, such

as with lossy operators (e.g. image transformations which use aliasing). In both of these
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cases, modeling the sequences of transformations could be important. Therefore we con-

sider a long short-term memory (LSTM) network as as a representative sequence model.

The output from each cell of the network is a distribution over the TFs. The next TF in the

sequence is then sampled from this distribution, and is fed as a one-hot vector to the next

cell in the network.

6.2 Learning a Transformation Sequence Model

The core challenge that we now face in learning Gθ is that it generates sequences over

TFs which are not necessarily differentiable or deterministic. This constraint is a critical

facet of our approach from the usability perspective, as it allows users to easily write TFs

as black-box scripts in the language of their choosing, leveraging arbitrary subfunctions,

libraries, and methods. In order to work around this constraint, we now describe our model

in the syntax of reinforcement learning (RL), which provides a convenient framework and

set of approaches for handling computation graphs with non-differentiable or stochastic

nodes [Schulman et al., 2015].

Reinforcement Learning Formulation Let si be the index of the ith TF applied, and x̃i

be the resulting incrementally transformed data point. Then we consider

S t = (x, x̃1, x̃2, . . . , x̃t, s1, . . . , st)

as the state after having applied t of the incremental TFs. Note that we include the incre-

mentally transformed data points x̃1, . . . , x̃t in S t since the TFs may be stochastic. Each of

the model classes considered for Gθ then uses a different state representation Ŝ . For the

mean field model, the state representation used is Ŝ MF
t = ∅. For the LSTM model, we use

Ŝ LSTMθ
t = LSTMθ(Ŝ

LSTMθ

t−1 , st), the state update operation performed by a standard LSTM

cell parameterized by θ.

Policy Gradient with Incremental Rewards Let `t(x, s) = log(1 − D∅φ(x̃t)) be the cu-

mulative loss for a data point x at step t, with `0(x) = `0(x, s) ≡ log(1 − D∅φ(x)). Let
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R(S t) = `t(x, s) − `t−1(x, s) be the incremental reward, representing the difference in dis-

criminator loss at incremental transformation step t. We can now recast the first term of our

objective J̃∅ as an expected sum of incremental rewards:

U(θ) ≡ Es∼Gθ

[
Ex∼U

[
log(1 − D∅φ(τsL ◦ . . . ◦ τs1(x)))

]]
= Es∼Gθ

Ex∼U

`0(x) +

L∑
t=1

R(S t)


(6.6)

We omit `0 in practice, equivalent to using the loss of x as a baseline term. Next, let πθ be

the stochastic transition policy implicitly defined by Gθ. We compute the recurrent policy

gradient [Wierstra et al., 2010] of the objective U(θ) as:

∇θU(θ) = Es∼Gθ

Ex∼U

 L∑
t=1

R(S t)∇θ log πθ(st | Ŝ t−1)

 (6.7)

Following standard practice, we approximate this quantity by sampling batches of n data

points and nA sampled action sequences per data point. We also use standard techniques of

discounting with factor γ ∈ [0, 1] and considering only future rewards [Greensmith et al.,

2004]. See the Appendix of [Ratner et al., 2017c] for details.

6.3 Experiments

We experimentally validate the proposed framework by learning augmentation models for

several benchmark and real-world data sets, exploring both image recognition and natu-

ral language understanding tasks. Our focus is on the performance of end classification

models trained on labeled datasets augmented with our approach and others used in prac-

tice. We also examine robustness to user misspecification of TFs, and sensitivity to core

hyperparameters.

6.3.1 Datasets and Transformation Functions

Benchmark Image Datasets We ran experiments on the MNIST [LeCun et al., 1998]

and CIFAR-10 [Krizhevsky and Hinton, 2009] datasets, using only a subset of the class
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labels to train the end classification models and treating the rest as unlabeled data. We

used a generic set of TFs for both MNIST and CIFAR-10: small rotations, shears, central

swirls, and elastic deformations. We also used morphologic operations for MNIST, and

adjustments to hue, saturation, contrast, and brightness for CIFAR-10.

Benchmark Text Dataset We applied our approach to the Employment relation extrac-

tion subtask from the NIST Automatic Content Extraction (ACE) corpus [Doddington et al.,

2004], where the goal is to identify mentions of employer-employee relations in news arti-

cles. Given the standard class imbalance in information extraction tasks like this, we used

data augmentation to oversample the minority positive class. The flexibility of our TF rep-

resentation allowed us to take a straightforward but novel approach to data augmentation in

this setting. We constructed a trigram language model using the ACE corpus and Reuters

Corpus Volume I [Lewis et al., 2004] from which we can sample a word conditioned on the

preceding words. We then used this model as the basis for a set of TFs that select words to

swap based on the part-of-speech tag and location relative to entities of interest (see [Ratner

et al., 2017c] for details).

Mammography Tumor-Classification Dataset To demonstrate the effectiveness of our

approach on real-world applications, we also considered the task of classifying benign ver-

sus malignant tumors from images in the Digital Database for Screening Mammography

(DDSM) dataset [Heath et al., 2000; Clark et al., 2013; Sawyer Lee et al., 2016], which is a

class-balanced dataset consisting of 1506 labeled mammograms. In collaboration with do-

main experts in radiology, we constructed two basic TF sets. The first set consisted of stan-

dard image transformation operations sub-selected so as not to break class-invariance in the

mammography setting. For example, brightness operations were excluded for this reason.

The second set consisted of both the first set as well as several novel segmentation-based

transplantation TFs. Each of these TFs utilized the output of an unsupervised segmentation

algorithm to isolate the tumor mass, perform a transformation operation such as rotation or

shifting, and then stitch it into a randomly-sampled benign tissue image. See Fig. 6.1 (right

panel) for an illustrative example, and [Ratner et al., 2017c] for further details.
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6.3.2 End Classifier Performance

We evaluated our approach by using it to augment labeled training sets for the tasks men-

tioned above, and show that we achieve strong gains over heuristic baselines. In particular,

for a given set of TFs, we evaluate the performance of mean field (MF) and LSTM genera-

tors trained using our approach against two standard data augmentation techniques used in

practice. The first (Basic) consists of applying random crops to images, or performing sim-

ple minority class duplication for the ACE relation extraction task. The second (Heur.) is

the standard heuristic approach of applying random compositions of the given set of trans-

formation operations, the most common technique used in practice [Ciresan et al.; Graham,

2014; He et al., 2016]. For both our approaches (MF and LSTM) and Heur., we addition-

ally use the same random cropping technique as in the Basic approach. We present these

results in Table 6.1, where we report test set accuracy (or F1 score for ACE), and use a

random subsample of the available labeled training data. Additionally, we include an extra

row for the DDSM task highlighting the impact of adding domain-specific (DS) TFs – the

segmentation-based operations described above – on performance.

In Table 6.2 we additionally compare to two related generative-adversarial methods,

the Categorical GAN (CatGAN) [Springenberg, 2015], and the semi-supervised GAN (SS-

GAN) from [Salimans et al., 2016]. Both of these methods use GAN-based architectures

trained on unlabeled data to generate new out-of-class data points with which to augment

a labeled training set. Following their protocol for CIFAR-10, we train our generator on

the full set of unlabeled data, and our end discriminator on ten disjoint random folds of

the labeled training set not including the validation set (i.e. n = 4000 each), averaging the

results.

In all settings, we train our TF sequence generator on the full set of unlabeled data. We

select a fixed sequence length for each task via an initial calibration experiment (Fig. 6.5b).

We use L = 5 for ACE, L = 7 for DDSM + DS, and L = 10 for all other tasks. We note

that our findings here mirrored those in the literature, namely that compositions of multiple

TFs lead to higher end model accuracies. We selected hyperparameters of the generator via

performance on a validation set. We then used the trained generator to transform the entire

training set at each epoch of end classification model training. For MNIST and DDSM we
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Task % None Basic Heur. MF LSTM

MNIST 1 90.2 95.3 95.9 96.5 96.7
10 97.3 98.7 99.0 99.2 99.1

CIFAR-10 10 66.0 73.1 77.5 79.8 81.5
100 87.8 91.9 92.3 94.4 94.0

ACE (F1) 100 62.7 59.9 62.8 62.9 64.2

DDSM
10 57.6 58.8

59.3 58.2 61.0
DDSM + DS 53.7 59.9 62.7

Table 6.1: Test set performance of end models trained on sub-
samples of the labeled training data (%), not including val-
idation splits, using various data augmentation approaches.
None indicates performance with no augmentation. All tasks
are measured in accuracy, except ACE which is measured by
F1 score.

Model Acc. (%)

CatGAN 80.42 ± 0.58
SS-GAN 81.37 ± 2.32
LSTM 81.47 ± 0.46

Table 6.2: Reported end
model accuracies, aver-
aged across 10% sub-
sample folds, on CIFAR-
10 for comparable GAN
methods.

use a four-layer all-convolutional CNN, for CIFAR10 we use a 56-layer ResNet [He et al.,

2016], and for ACE we use a bi-directional LSTM. Additionally, we incorporate a basic

transformation regularization term as in [Sajjadi et al., 2016] (see [Ratner et al., 2017c]),

and train for the last ten epochs without applying any transformations as in [Graham, 2014].

In all cases, we use hyperparameters as reported in the literature. For further details of

generator and end model training see [Ratner et al., 2017c].

We see that across the applications studied, our approach outperforms the heuristic

data augmentation approach most commonly used in practice. Furthermore, the LSTM

generator outperforms the simple mean field one in most settings, indicating the value of

modeling sequential structure in data augmentation. In particular, we realize significant

gains over standard heuristic data augmentation on CIFAR-10, where we are competitive

with comparable semi-supervised GAN approaches, but with significantly smaller variance.

We also train the same CIFAR-10 end model using the full labeled training dataset, and

again see strong relative gains (2.1 pts. in accuracy over heuristic), coming within 2.1 points

of the current state-of-the-art [Huang et al., 2016] using our much simpler end model.

On the ACE and DDSM tasks, we also achieve strong performance gains, showing



CHAPTER 6. DATA AUGMENTATION 149

(a) (b)

Figure 6.5: (a) Learned TF frequency parameters for misspecified and normal TFs on
MNIST. The mean field model correctly learns to avoid the misspecified TFs. (b) Larger
sequence lengths lead to higher end model accuracy on CIFAR-10, while random performs
best with shorter sequences, according to a sequence length calibration experiment.

the ability of our method to productively incorporate more complex transformation oper-

ations from domain expert users. In particular, in DDSM we observe that the addition of

the segmentation-based TFs causes the heuristic augmentation approach to perform signif-

icantly worse, due to a large number of new failure modes resulting from combinations

of the segmentation-based TFs – which use gradient-based blending – and the standard

TFs such as zoom and rotate. In contrast, our LSTM model learns to avoid these destruc-

tive subsequences and achieves the highest score, resulting in a 9.0 point boost over the

comparable heuristic approach.

Robustness to TF Misspecification One of the high-level goals of our approach is to

enable an easier interface for users by not requiring that the TFs they specify be completely

class-preserving. The lack of any assumption of well-specified transformation operations

in our approach, and the strong empirical performance realized, is evidence of this robust-

ness. To additionally illustrate the robustness of our approach to misspecified TFs, we train

a mean field generator on MNIST using the standard TF set, but with two TFs (shear oper-

ations) parameterized so as to map almost all images to the null class. We see in Fig. 6.5a

that the generator learns to avoid applying the misspecified TFs (red lines) almost entirely.
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6.4 Related Work

We now review related work, both to motivate comparisons in the experiments section and

to present complementary lines of work.

Heuristic Data Augmentation Most state-of-the-art image classification pipelines use

some limited form of data augmentation [Graham, 2014; Dosovitskiy et al., 2015]. This

generally consists of applying crops, flips, or small affine transformations, in fixed order

or at random, and with parameters drawn randomly from hand-tuned ranges. In addition,

various studies have applied heuristic data augmentation techniques to modalities such as

audio [Uhlich et al., 2017] and text [Lu et al., 2006]. As reported in the literature, the

selection of these augmentation strategies can have large performance impacts, and thus

can require extensive selection and tuning by hand [Ciresan et al.; Dosovitskiy et al., 2015]

(see the Appendix of [Ratner et al., 2017c] as well).

Interpolation-Based Techniques Some techniques have explored generating augmented

training sets by interpolating between labeled data points. For example, the well-known

SMOTE algorithm applies this basic technique for oversampling in class-imbalanced set-

tings [Chawla et al., 2002], and recent work explores using a similar interpolation approach

in a learned feature space [DeVries and Taylor, 2017]. [Hauberg et al., 2016] proposes

learning a class-conditional model of diffeomorphisms interpolating between nearest-neighbor

labeled data points as a way to perform augmentation. We view these approaches as com-

plementary but orthogonal, as our goal is to directly exploit user domain knowledge of

class-invariant transformation operations.

Adversarial Data Augmentation Several lines of recent work have explored techniques

which can be viewed as forms of data augmentation that are adversarial with respect to the

end classification model. In one set of approaches, transformation operations are selected

adaptively from a given set in order to maximize the loss of the end classification model

being trained [Teo et al., 2008; Fawzi et al., 2016]. These procedures make the strong as-

sumption that all of the provided transformations will preserve class labels, or use bespoke

models over restricted sets of operations [Sixt et al., 2016]. Another line of recent work has
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showed that augmentation via small adversarial linear perturbations can act as a regular-

izer [Goodfellow et al., 2014b; Miyato et al., 2015]. While complimentary, this work does

not consider taking advantage of non-local transformations derived from user knowledge

of task or domain invariances.

Finally, generative adversarial networks (GANs) [Goodfellow et al., 2014a] have re-

cently made great progress in learning complete data generation models from unlabeled

data. These can be used to augment labeled training sets as well. Class-conditional

GANs [Baluja and Fischer, 2017; Mirza and Osindero, 2014] generate artificial data points

but require large sets of labeled training data to learn from. Standard unsupervised GANs

can be used to generate additional out-of-class data points that can then augment labeled

training sets [Salimans et al., 2016; Springenberg, 2015]. We compare our proposed ap-

proach with these methods empirically in Section 6.3.



Chapter 7

Conclusion and Future Work

In this thesis, we described work on training data management systems that enable users

to programmatically build, manage, and model training datasets, and described empirical

results and real-world deployments demonstrating that this could be a radically faster, more

flexible, and more accessible interface to machine learning. Already, we have seen many

teams at various large technology companies re-organizing around these new ideas of train-

ing dataset management, with Snorkel and other programmatic ways of building, manag-

ing, and modeling training data serving as a way to represent, re-use, and combine various

knowledge resources effectively across an organization [Bach et al., 2019; Bringer et al.,

2019]. These changes suggest a radical shift to the way data-driven software systems are

built, shared, and deployed within organizations, and point to a near future wherein large

numbers of inter-related machine learning models are rapidly developed and deployed us-

ing increasingly high-level, passive, and noisy supervision, for increasingly complex tasks,

and with increasing systems support for parts of the machine learning pipeline outside of

the model itself.

In this Chapter, we give an overview of several exciting directions for future research,

motivated by these shifts: starting with extensions to Snorkel, and systems and techniques

for weak supervision more broadly, and then extending to broader topics around machine

learning systems.

152
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7.1 Snorkel & Weak Supervision Systems

We start by outlining several research directions around extensions of the techniques de-

scribed in this thesis, and Snorkel specifically. However, we note that many of the following

research directions pertain to weak supervision approaches and systems much more gener-

ally as well.

Handling Structured & Regression Settings A first set of directions is to extend Snorkel,

and the weak supervision techniques outlined in this thesis, to various settings beyond cat-

egorical classification. Extending data programming and the label model of Chapter 3 as

well as data augmentation (Chapter 6) and other weak supervision techniques to handle

structured data is one interesting direction: for example, sequential data such as time se-

ries and video, as well as more complex structured data such as code and other objects with

rich and complex structure. Extending these weak supervision approaches to handle set-

tings beyond classification, such as regression, reinforcement learning, anomaly detection,

and others is another natural and interesting set of next steps, as well as the complementary

challenge of properly handling labeling functions that output continuous, distributional, or

other more complex values.

Understanding Generalization in Weak Supervision In Chapters 3 and 4, we define a

pipeline consisting of two models: first, the label model, which is a reweighted combination

of the labeling function outputs; and second, some end discriminative model trained on the

outputs of the label model, but defined over arbitrary input features or data. One question

which immediately arises is: why should we use this second, end discriminative model at

all?

In many settings, such as the cross-modal ones described in Sections 4.3 and 4.5, the

answer is that the labeling functions—and therefore the label model—cannot be applied at

test time, but the end discriminative model is defined over a disjoint set of features—e.g. a

different data modality—and therefore can be applied. For example at training time we may

have both text and image data, but at test time only image data, as in the radiology triaging

setting; or we may have non-servable features that are useful in the labeling functions, but

not servable in production (Section 4.5). In these settings, the reason for training both
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models is clear (and can be interpreted as, implicitly, a form of cross-feature distillation or

transfer).

In other settings, however, the label and discriminative models are defined over the

same set of features. Empirically, we show that in many of these settings, the end discrim-

inative model is able to generalize beyond the coverage of the labeling functions, thereby

increasing recall (Section 4.3). However, characterizing this weak supervision generaliza-

tion in a more precise and formal way remains a theoretical challenge for future research,

and one that would also have implications relevant to many weak supervision approaches

beyond Snorkel. Intuitively, and based on empirical evidence, we would expect there to

be two basic mechanisms: first, the use of implicit or explicit inductive biases in the end

model, such as pre-trained embeddings or network layers; and second, the ability of a

properly regularized end model to spread weight to features that co-occur with the label-

ing function outputs. Better theoretical characterization of when and how generalization

occurs in these programmatic weak supervision settings would presumably help practition-

ers understand when, where, and how to apply weak supervision approaches with specific

end model types. More broadly, considering more complex ways of connecting the user-

provided weak supervision—via the label model—and the final model being trained is an

interesting direction for future study; for example, the label model and end discriminative

model could potentially share information in a higher-density way than training labels, be

trained jointly, and/or be combined in various ways.

Formalizing & Supporting Programmatic Weak Supervision Workflows In Chapters

3 and 4, we define a basic pipeline and workflow whereby users inspect a sample of unla-

beled data, or labeled data from error analysis, then write weak supervision operators (e.g.

labeling or transformation functions), and then use these to train a model. This iterative

workflow is simple and intuitive enough that many users, including those in the user study

we report on (Section 4.4), have been able to successfully use Snorkel in a range of real

world settings (e.g. see Section 4.5). However, guiding, structuring, and formalizing this

programmatic weak supervision workflow can undoubtedly help real-world users to more

efficiently use Snorkel and, more broadly, weak supervision techniques.

One natural direction is to consider the intersection of the data programming approach
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proposed in this thesis and active learning. Traditionally, active learning considers iden-

tifying data points to be labeled by hand, such that these labels will be more valuable

to end model performance than if randomly sampled. In our setting, we might instead

consider identifying sets of data points to show the user in order to (either explicitly or im-

plicitly) prompt them to write programmatic weak supervision operators, e.g. labeling or

transformation functions, that cover a specific part of the space. Other research directions

might focus on auto-suggesting labeling functions [Varma and Ré, 2019] or labeling func-

tion templates; automatically completing or suggesting completions to program sketches;

and prompting or guiding the iterative weak supervision development process. Broadly,

programmatic weak supervision has the potential to radically transform the practice of de-

veloping supervised learning models from a largely labeling-and-tuning process into an

iterative development one, and this shift will lead to many new research directions around

this emerging workflow.

Ascending the Code-as-Supervision Stack The overall goal of the methods in this the-

sis, and Snorkel specifically, is to enable users to program the modern machine learning

stack, by labeling training data with labeling functions rather than manual annotation. This

code-as-supervision approach can then inherit the traditional advantages of code such as

modularity, debuggability, and higher level abstraction layers. In particular, enabling this

last element—even higher-level, more declarative ways of specifying labeling functions—

has been a major motivation of the Snorkel project.

Since Snorkel’s release, various extensions have explored higher-level, more declarative

interfaces for labeling training data by building on top of Snorkel (Figure 7.1). One idea,

motivated by the difficulty of writing labeling functions directly over image or video data,

is to first compute a set of features or primitives over the raw data using unsupervised

approaches, and then write labeling functions over these building blocks [Varma et al.,

2017]. For example, if the goal is to label instances of people riding bicycles, we could

first run an off-the-shelf pre-trained algorithm to put bounding boxes around people and

bicycles, and then write labeling functions over the dimensions or relative locations of

these bounding boxes.1 In medical imaging tasks, anatomical segmentation masks provide

1See the image tutorial at snorkel.stanford.edu.

snorkel.stanford.edu
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Figure 7.1: In a traditional programming stack, progressively higher-level languages and
abstractions provide increasingly simple and declarative interfaces. Similarly, we envision
a code-as-supervision stack built on top of the basic unit of labeling functions, allowing
users to label training data in increasingly higher-level ways. Figure from [Ratner et al.,
2019c].

a similarly intuitive semantic abstraction for writing labeling functions over. For example,

in a large collection of cardiac MRI videos from the UK Biobank, creating segmentations

of the aorta enabled a cardiologist to define labeling functions for identifying rare aortic

valve malformations [Fries et al., 2019] (Section 4.5).

An even higher level interface is natural language. The Babble Labble project [Han-

cock et al., 2018] accepts natural language explanations of data points, and then uses se-

mantic parsers to parse these explanations into labeling functions. In this way, users without

programming knowledge have the capability to write labeling functions just by explaining

reasons why data points have specific labels. Another related approach is to use program

synthesis techniques, combined with a small set of labeled data points, to automatically

generate labeling functions [Varma and Ré, 2019]. Finally, observational approaches can

potentially leverage passively-collected signals such as from mouse, keyboard, and eye

tracking devices, query and device logs, and more. Moving forwards, a diverse and excit-

ing range of inputs can potentially be leveraged or collected via new interfaces, and then

effectively “compiled” to programmatic supervision that is then modeled and applied to

data by systems like Snorkel.
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Exploring New Weak Supervision Operators In this thesis, we introduce two weak

supervision operators—labeling functions and transformation functions—which serve as

abstractions for various forms of weak supervision, both new and existing. However, there

is a much broader range of ways that practitioners do, and could, interact with machine

learning via the conduit of training data. Additionally, further empirical and theoretical

exploration of how these different operators interact and are optimally combined, and how

they can be used in concert with the broader spectrum of methods for addressing limited

labeled training data (Section 2.2), will likely be fruitful and impactful area of future re-

search.

New Execution Tradeoffs Finally, there are additional research directions of interest

studying other tradeoffs that balance end model accuracy with other performance metrics

such as memory and speed. As one example, labeling functions may at times be expen-

sive to execute, and we could use similar techniques as those developed in this thesis—e.g.

building off of structure learning techniques—to determine when execution of some of

them may be skipped. Systems tradeoffs around data augmentation, especially when being

used in concert with weak programmatic supervision, represent another interesting direc-

tion of inquiry.

7.2 Supporting the Broader Machine Learning Pipeline

As machine learning models become increasingly commoditized and well-supported, the

processes upstream and downstream of them will become increasingly critical. This thesis

focused on one core upstream task that has traditionally been done in heavily manual and/or

ad hoc ways—labeling and managing training data—and attempted to formalize, support,

and accelerate it. Similarly, a range of other upstream and downstream tasks should prove

to be interesting and impactful targets for future research at the intersection of data man-

agement systems, machine learning algorithms, and theory.

One such task is the collection of unlabeled data. The approaches in this thesis, and

in many other settings, assume some unbiased and i.i.d. sampling of unlabeled data, and

then consider ways of labeling it (e.g. with weak supervision) or directly leveraging it
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Figure 7.2: In [Ratner et al., 2019c], we envision a pipeline consisting of (1) building
training sets from weak supervision, provided via a stack of interfaces at different levels of
abstraction; (2) combining training signals for tasks across an organization into a central
massively multitask model, which allows developers to contribute and use task models via
the simple interface of labels; and (3) deploying servable models by distilling tasks from
the central model into commodity edge models.

(e.g. with semi-supervised learning). However, in reality, unlabeled data is also collected

in biased, noisy, and ad hoc ways. For example, unlabeled scientific documents may come

from some large, manually-constructed PubMed query; medical images may come from a

specific silo, patient distribution, and/or date range. While the basic notion of distributional

shift and bias in datasets is far from new, there is likely a rich area of new systems, methods,

and formalizations to build around how developers in real-world settings can manage and

model the collection of unlabeled data from various sources, and tie it into the rest of the

ML pipeline.

Another example of an upstream process that is often done in ad hoc ways is candidate

extraction, a process common in high-class imbalance tasks such as information extraction

and segmentation, in which some set of basic objects are defined heuristically, and then a

model is trained to operate over them. Putting more structure around this process, mov-

ing towards automating it—either jointly with the end model, or separately—and further

formalizing the inherent tradeoffs are all interesting research directions.

7.3 Massively Multi-Task & Multi-Model Systems

In Chapter 5, we described extending the data programming and weak supervision ap-

proaches in this thesis to the multi-task learning (MTL) setting. MTL has recently received
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a surge of renewed interest in the context of new deep learning architectures [Ruder, 2017],

where the focus in general is on achieving better accuracy across all tasks by jointly learn-

ing and sharing some representation. However, there are also a range of machine learning

systems questions and challenges that arise in the MTL context, especially when these

MTL models are coupled with weak supervision approaches such as those presented in this

thesis, e.g. as in Chapter 5.

To start, the increasing prevalence of machine learning, especially when coupled with

new weak supervision approaches that enable new models to be created with a fraction of

the time and cost, points to a near term in which multi-task models contain not several tasks,

but tens or hundreds of tasks. This new massively multi-task learning (MMTL) regime

[Ratner et al., 2019c] emphasizes traditional MTL challenges at an entirely new scale:

e.g., how do MMTL model maintainers ensure that new tasks do not negatively affect

existing ones? How do they assemble network architectures with tens to hundreds of tasks?

Especially in a setting where programmatic supervision approaches like Snorkel are used

to build and manage training sets that can change every time a developer edits a labeling

function, new questions arise around efficiently and incrementally maintaining and serving

massively multi-task models, which may require novel techniques at the intersection of

traditional data management practices and new machine learning ones. Massively multi-

task models could conceivably become a new form of dynamic “codebase” for sharing,

updating, and deploying learned representations and models across an organization, leading

to a whole host of critical new research questions at the intersection of systems and machine

learning.

Finally, while one apotheosis of modern multi-task learning efforts might be the merg-

ing of all tasks in an application or organization into a single model, engineering and social

realities that many ML pipelines will involve many separate models, as they increasingly

do today. For example, a standard end-to-end knowledge base construction application

might consist of separate, interconnected models for crawling the web to collect docu-

ments, parsing these documents, tagging named entities, identifying relations between the

tagged entities, and completing a knowledge base populated with these entities and edges.

More broadly, it is increasingly common for models to be defined over the outputs of other
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models- either as input features, or, in the case of the pipelines as considered in this the-

sis, as weak supervision. As models become quicker and easier to build, using modern

infrastructure and tools, and train, using weak supervision approaches as in this thesis,

managing the increasingly complex and dynamic multi-model systems that result will be a

major challenge. Aspects such as tracking heterogeneous dependencies between models,

e.g. through pipelined inputs, shared representations, and weak supervision, incremen-

tally maintaining and updating these systems, and defining design tradeoffs between these

modular multi-model systems and singular multi-task models will present interesting and

impactful research directions.

7.4 Conclusion

In this thesis, we focused on a tectonic shift in the machine learning development landscape

away from traditional focal points like feature and model engineering, and towards a new

bottleneck of building and managing training datasets. We viewed this often prohibitively

expensive task of labeling and managing training data as a fundamental data management

and machine learning problem, and proposed a new approach, data programming, in which

rather than hand-labeling training data, subject matter expert users label data program-

matically by writing small heuristic labeling functions. These labeling functions can have

limited coverage, be noisy, correlated, and conflict with each other; to address this we de-

veloped a set of theoretically-grounded statistical modeling techniques for estimating their

accuracies and correlations in the absence of ground truth, and then re-weighting and com-

bining their outputs for use as clean, confidence-weighted training labels.

We then described Snorkel, a framework for building and managing training data using

the approach of data programming, and designed around the core hypothesis that even non-

expert users can build high-performance machine learning applications almost entirely by

programmatically labeling and managing training data. We validated this empirically, the-

oretically, through user studies, and by supporting Snorkel as an open source framework

over several years, during which it was deployed in science, medicine, and industry across

problems involving text, semi-structured, image, video, time series, and other data modal-

ities. Finally, we described two additional systems, aimed at the same goal of enabling
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users to build performant machine learning systems by building and managing training

datasets. First, we described Snorkel MeTaL, an extension of Snorkel to the multi-task

learning setting where weakly-supervised models for multiple tasks share a jointly learned

representation. Second, we described techniques for programmatically defining data aug-

mentation strategies, in which users write transformation functions that express knowledge

of domain invariants, which are then automatically compiled into data augmentation poli-

cies over training datasets.

The overall goal of this thesis is to demonstrate that programmatically building, man-

aging, and modeling training datasets can be a powerful, effective, and accessible interface

to machine learning, and that in turn training data should be viewed not as a costly manual

bottleneck, but as a medium for effectively programming modern machine learning models.

Our hope is that the work in this thesis not only continues to provide real-world value, but

also serves to incrementally assist a new wave of more responsive, powerful, and accessible

machine learning systems.
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Glossary of Symbols
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Symbol Definition

X Space of data points
x Data point, x ∈ X
n Number of data points in the (labeled or unlabeled) training set
Y Space of labels
y Label, y ∈ Y
~y Vector of labels, ~y ∈ Yn

T A labeled training dataset T = {(x(1), y(1)), . . . , (x(n), y(n))}
XU An unlabeled training dataset XU = {x(1), . . . , x(n)}

D Underlying data distribution
H Model or hypothesis class
w Model parameters
hw Model, hw ∈ H

l Loss function
R, R̂ The risk and empirical risk respectively
L The (marginal) likelihood of the observed data
φ A feature extractor, mapping data points to features φ : X 7→ Rd

d Dimension of the feature vector φ(x)
λ j The output of the jth weak labeling function for a data point
m The number of labeling functions
λ The vector of the m labeling functions for a data point
Λ The n × m label matrix of the labeling function outputs over a dataset
∅ An output symbol denoting that the labeling function has abstained
θ The label model parameters
ψ A sufficient statistic or factor function in an exponential model
Gλ The labeling function dependency graph, Gλ = (V, E)
Ginv The inverse labeling function dependency graph
Ω The augmented edge set of Ginv

C The set of cliques in Gλ

C̄,S The maximal and separator set cliques of the junction tree of Gλ

O The observable cliques O = {C | y < C,C ∈ C̄}
dC The dimensions of the minimal indicator variables vector ψ(C)
Gtask The task graph in a multi-task setting
c j The coverage set of tasks λ j emits non-null labels for
τi A transformation function, τi : X 7→ X

Table A.1: Glossary of symbols used in this thesis.
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Proofs: Maximum Marginal Likelihood
Approach

B.1 General Theoretical Results

In this section, we will state the full form of the theoretical results we alluded to in the body

of the paper. First, we restate, in long form, our setup and assumptions, focusing on the

binary setting (with abstains).

We assume that, for some function ψ : {−1, ∅, 1}m × {−1, 1} 7→ {−1, 0, 1}M of sufficient

statistics, we are concerned with learning distributions, over the set Ω = {−1, ∅, 1}m ×

{−1, 1}, of the form

pθ(λ, y) =
1
Zθ

exp(θTψ(λ, y)), (B.1)

where θ ∈ RM is a parameter, and Zθ is the partition function that makes this a distribution.

We assume that we are given, i.e. can derive from the data programming specification,

some set Θ of feasible parameters. This set must have the following two properties.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ̂ that is a function

of some number D samples from pθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ

and for some c > 0,

Cov
(
θ̂
)
�

I
2cD

. (B.2)
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Second, for any θ1, θ2 ∈ Θ,

E(λ2,y2)∼pθ2

[
Var(λ1,y1)∼pθ1

(y1|λ1 = λ2)
]
≤

c
M
. (B.3)

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ.

On the other hand, we are also concerned with a distribution D which ranges over the

set X × {−1, 1}, and represents the distribution of training and test examples we are using

to learn. These objects are associated with a labeling function λ : X 7→ {−1, ∅, 1}m and a

feature function φ : X 7→ Rd. We make three assumptions about this distribution. First, we

assume that, given (x, y) ∼ D, the class label y is independent of the features φ(x) given the

labels λ. That is,

(x, y) ∼ D ⇒ y ⊥ φ(x) | λ. (B.4)

Second, we assume that we can describe the relationship between λ and y in terms of our

family in (B.1) above. That is, for some parameter θ∗ ∈ Θ,

pD(λ, y) = pθ∗(λ, y). (B.5)

Third, we assume that the features themselves are bounded; for all x ∈ X,

||φ(x)|| ≤ 1. (B.6)

Our goal is twofold. First, we want to recover some estimate θ̂ of the true parameter θ∗.

Second, we want to produce a parameter ŵ that minimizes the expected regularized logistic

loss, or risk:

R(w) = E(x,y)∼D

[
log(1 + exp(−wTφ(x)y))

]
+ ρ ||w||2 .

We actually accomplish this by minimizing a noise-aware loss function, given our recov-

ered parameter θ̂,

Rθ̂(w) = E(x,y)∼D

[
Eỹ∼pθ̂(·|λ(x))

[
log(1 + exp(−wTφ(x)ỹ))

]]
+ ρ ||w||2 .
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In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware

loss function, which is only this in expectation. Since the analysis of logistic regression is

not itself interesting, we assume that we are able to run some algorithm that produces an

estimate ŵ which satisfies, for some χ > 0,

E
[
Rθ̂(ŵ) −min

w
Rθ̂(w)

]
≤ χ. (B.7)

The algorithm chosen can be anything, but in practice, we use stochastic gradient descent.

We learn θ̂ and ŵ by running the following algorithm.

Algorithm 5 Data Programming
Require: Step size η, dataset XU ⊂ X, and initial parameter θ0 ∈ Θ.
θ → θ0

for all x ∈ XU do
Independently sample (λ, y) from pθ, and ỹ from pθ(·|λ).
θ ← θ + η(ψ(λ, y) − ψ(λ, ỹ)).
θ = PΘ(θ) . Here, PΘ denotes orthogonal projection onto Θ.

Compute ŵ using the algorithm described in (B.6) return (θ, ŵ).

Under these assumptions, we are able to prove the following theorem about the behavior

of Algorithm 5.

Theorem 5. Suppose that we run Algorithm 5 on a data programming specification that

satisfies conditions (B.2), (B.3), (B.4), (B.5), (B.6), and (B.7). Suppose further that, for

some parameter ε > 0, we use step size

η =
cε2

4

and our dataset is of a size n = |XU | that satisfies

n =
2

c2ε2 log
(
2 ||θ0 − θ

∗||
2

ε

)
.

Then, we can bound the expected parameter error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M
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and the expected risk with

E
[
R(θ̂) −min

w
R(w)

]
≤ χ +

cε
2ρ
.

This theorem’s conclusions and assumptions can readily be seen to be identical to those

of Theorem 2 in the main body of the paper, except that they apply to the slightly more gen-

eral case of arbitrary ψ, rather than ψ of the explicit form described in the body. Therefore,

in order to prove Theorem 2, it suffices to prove Theorem 5, which we will do in Section

B.3.

B.2 Theoretical Results for Independent Model

For the independent model, we can obtain a more specific version of Theorem 5. In the

independent model, the variables are, as before, λ ∈ {−1, ∅, 1}m and y ∈ {−1, 1}. The

sufficient statistics are, letting ∅ = 0 for this subsection, λ jy and λ2
j .

To produce results that make intuitive sense, we also define the alternate parameteriza-

tion

p(λ j | y) =


β j

1+γ j

2 λ j = y

(1 − β j) λ j = 0

β j
1−γ j

2 λ j = −y

.

In comparison to the parameters used in the body of the paper, we have

α j =
1 + γ j

2
.

Now, we are concerned with models that are feasible. For a model to be feasible (i.e.

for θ ∈ Θ), we require that it satisfy, for some constants γmin > 0, γmax > 0, and βmin,

γmin ≤ γ j ≤ γmax βmin ≤ β j ≤
1
2
.

For 0 ≤ β ≤ 1 and −1 ≤ γ ≤ 1.

For this model, we can prove the following corollary to Theorem 5
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Corollary 2. Suppose that we run Algorithm 5 on an independent data programming spec-

ification that satisfies conditions (B.4), (B.5), (B.6), and (B.7). Furthermore, assume that

the number of labeling functions we use satisfies

m ≥
9.34 artanh(γmax)

(γβ)minγ
2
min

log
(
24m
βmin

)
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε

2

16

and our dataset is of a size n = |XU | that satisfies

n =
32

β2
minε

2
log

(
2 ||θ0 − θ

∗||
2

ε

)
.

Then, we can bound the expected parameter error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M

and the expected risk with

E
[
R(ŵ) −min

w
R(w)

]
≤ χ +

βminε

8ρ
.

We can see that if, as stated in the body of the paper, β j ≥ 0.3 and 0.8 ≤ α j ≤ 0.9

(which is equivalent to 0.6 ≤ γ j ≤ 0.8), then

2000 ≥ 1896.13 =
9.34 artanh(0.8)

0.3 · 0.63 log
(
24 · 2000

0.3

)
.

This means that, as stated in the paper, m = 2000 is sufficient for this corollary to hold with

n =
32

0.32 · ε2 log
(
2m(artanh(0.8) − artanh(0.6))2

ε

)
=

356
ε2 log

( m
3ε

)
.

Thus, proving Corollary 2 is sufficient to prove Theorem 1 from the body of the paper. We
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will prove Corollary 2 in Section B.5

B.3 Proof of Theorem 5

First, we state some lemmas that will be useful in the proof to come.

Lemma 1. Given a family of maximum-entropy distributions

pθ(x) =
1
Zθ

exp(θTψ(x)),

for some function of sufficient statistics ψ : Ω 7→ RM, if we let J : RM 7→ R be the

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = log pθ(x ∈ A),

then its gradient is

∇J(θ) = Ex∼pθ
[
ψ(x) | x ∈ A

]
− Ex∼pθ

[
ψ(x)

]
and its Hessian is

∇2J(θ) = Covx∼pθ (ψ(x)|x ∈ A) − Covx∼pθ (ψ(x)) .

Lemma 2. Suppose that we are looking at a distribution from a data programming label

model. That is, our maximum-entropy distribution can now be written in terms of two

variables, the labeling function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 1}, as

pθ(λ, y) =
1
Zθ

exp(θTψ(λ, y)),

where we assume without loss of generality that for some M, ψ(λ, y) ∈ RM and ||ψ(λ, y)||∞ ≤

1. If we let J : RM 7→ R be the maximum expected log-likelihood objective, under another

distributionD, for the event associated with the observed labeling function values λ,

J(θ) = E(λ∗,y∗)∼D
[
log pθ(λ∗)

]
,
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then its Hessian can be bounded with

∇2J(θ) � MIE(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
− I(θ),

where I(θ) is the Fisher information.

Lemma 3. Suppose that we are looking at a data programming distribution, as described

in the text of Lemma 2. Suppose further that we are concerned with some feasible set of

parameters Θ ⊂ RM, such that the any model with parameters in this space satisfies the

following two conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from pθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ̂ that is a function

of some number D samples from pθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ

and for some c > 0,

Cov
(
θ̂
)
�

I
2cD

.

Second, for any θ, θ∗ ∈ Θ,

E(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
≤

c
M
.

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ∗.

Under these conditions, the function J is strongly concave on Θ with parameter of

strong convexity c.

Lemma 4. Suppose that we are looking at a data programming maximum likelihood esti-

mation problem, as described in the text of Lemma 2. Suppose further that the objective

function J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true

distribution pθ∗ , where θ∗ ∈ Θ, then if we use step size

η =
cε2

4
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and run (using a fresh sample at each iteration) for T steps, where

T =
2

c2ε2 log
(
2 ||θ0 − θ

∗||
2

ε

)
then we can bound the expected parameter estimation error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M.

Lemma 5. Assume in our model that, without loss of generality, ||φ(x)|| ≤ 1 for all x, and

that in our true modelD, the class y is independent of the features φ(x) given the labels λ.

Suppose that we now want to solve the expected loss minimization problem wherein

we minimize the objective

R(w) = E(x,y)∼D

[
log(1 + exp(−wTφ(x)y))

]
+ ρ ||w||2 .

We actually accomplish this by minimizing our noise-aware loss function, given our chosen

parameter θ̂,

Rθ̂(w) = E(x,y)∼D

[
Eỹ∼pθ̂(·|λ)

[
log(1 + exp(−wTφ(x)ỹ))

]]
+ ρ ||w||2 .

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-

aware loss function, which is only this in expectation. Suppose that doing so produces an

estimate ŵ which satisfies, for some χ > 0,

E
[
Rθ̂(ŵ) −min

w
Rθ̂(w)

]
θ̂ ≤ χ.

(Here, the expectation is taken with respect to only the random variable ŵ.) Then, we can

bound the expected risk with

E
[
R(ŵ) −min

w
R(w)

]
≤ χ +

cε
2ρ
.

Now, we restate and prove our main theorem.
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Theorem 5. Suppose that we run Algorithm 5 on a data programming specification that

satisfies conditions (B.2), (B.3), (B.4), (B.5), (B.6), and (B.7). Suppose further that, for

some parameter ε > 0, we use step size

η =
cε2

4

and our dataset is of a size n = |XU | that satisfies

n =
2

c2ε2 log
(
2 ||θ0 − θ

∗||
2

ε

)
.

Then, we can bound the expected parameter error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M

and the expected risk with

E
[
R(θ̂) −min

w
R(w)

]
≤ χ +

cε
2ρ
.

Proof. The bounds on the expected parameter estimation error follow directly from Lemma

4, and the remainder of the theorem follows directly from Lemma 5. �

B.4 Proofs of Lemmas

Lemma 1. Given a family of maximum-entropy distributions

pθ(x) =
1
Zθ

exp(θTψ(x)),

for some function of sufficient statistics ψ : Ω 7→ RM, if we let J : RM 7→ R be the

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = log pθ(x ∈ A),
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then its gradient is

∇J(θ) = Ex∼pθ
[
ψ(x) | x ∈ A

]
− Ex∼pθ

[
ψ(x)

]
and its Hessian is

∇2J(θ) = Covx∼pθ (ψ(x)|x ∈ A) − Covx∼pθ (ψ(x)) .

Proof. For the gradient,

∇J(θ) = ∇ log pθ(A)

= ∇ log
(∑

x∈A exp(θTψ(x))∑
x∈Ω exp(θTψ(x))

)
= ∇ log

∑
x∈A

exp(θTψ(x))

 − ∇ log

∑
x∈Ω

exp(θTψ(x))


=

∑
x∈A ψ(x) exp(θTψ(x))∑

x∈A exp(θTψ(x))
−

∑
x∈Ω ψ(x) exp(θTψ(x))∑

x∈Ω exp(θTψ(x))

= Ex∼pθ(·|x∈A)
[
ψ(x)

]
− Ex∼pθ

[
ψ(x)

]
.

And for the Hessian,

∇2J(θ) = ∇

∑
x∈A ψ(x) exp(θTψ(x))∑

x∈A exp(θTψ(x))
− ∇

∑
x∈Ω ψ(x) exp(θTψ(x))∑

x∈Ω exp(θTψ(x))

=

∑
x∈A ψ(x)ψ(x)T exp(θTψ(x))∑

x∈A exp(θTψ(x))
−

(∑
x∈A ψ(x) exp(θTψ(x))

) (∑
x∈A ψ(x) exp(θTψ(x))

)T(∑
x∈A exp(θTψ(x))

)2

−


∑

x∈Ω ψ(x)ψ(x)T exp(θTψ(x))∑
x∈Ω exp(θTψ(x))

−

(∑
x∈Ω ψ(x) exp(θTψ(x))

) (∑
x∈Ω ψ(x) exp(θTψ(x))

)T(∑
x∈Ω exp(θTψ(x))

)2


= Ex∼pθ(·|x∈A)

[
ψ(x)ψ(x)T

]
− Ex∼pθ(·|x∈A)

[
ψ(x)

]
Ex∼pθ(·|x∈A)

[
ψ(x)

]
−

(
Ex∼pθ

[
ψ(x)ψ(x)T

]
− Ex∼pθ

[
ψ(x)

]
Ex∼pθ

[
ψ(x)

]T
)

= Covx∼pθ(·|x∈A) (ψ(x)) − Covx∼pθ (ψ(x)) .

�



APPENDIX B. PROOFS: MAXIMUM MARGINAL LIKELIHOOD APPROACH 174

Lemma 2. Suppose that we are looking at a distribution from a data programming label

model. That is, our maximum-entropy distribution can now be written in terms of two

variables, the labeling function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 1}, as

pθ(λ, y) =
1
Zθ

exp(θTψ(λ, y)),

where we assume without loss of generality that for some M, ψ(λ, y) ∈ RM and ||ψ(λ, y)||∞ ≤

1. If we let J : RM 7→ R be the maximum expected log-likelihood objective, under another

distributionD, for the event associated with the observed labeling function values λ,

J(θ) = E(λ∗,y∗)∼D
[
log pθ(λ∗)

]
,

then its Hessian can be bounded with

∇2J(θ) � MIE(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
− I(θ),

where I(θ) is the Fisher information.

Proof. From the result of Lemma 1, we have that

∇2J(θ) = E(λ∗,y∗)∼D

[
Cov(λ,y)∼pθ (ψ(λ, y)|λ = λ∗)

]
− Cov(λ,y)∼pθ (ψ(λ, y)) . (B.8)

We start by defining ψ0(λ) and ψ1(λ) such that

ψ(λ, y) = ψ(λ, 1)
1 + y

2
+ψ(λ,−1)

1 − y
2

=
ψ(λ, 1) + ψ(λ,−1)

2
+y
ψ(λ, 1) − ψ(λ,−1)

2
= ψ0(λ)+yψ1(λ).

This allows us to reduce (B.8) to

∇2J(θ) = E(λ∗,y∗)∼D

[
ψ1(λ∗)ψ1(λ∗)T Var(λ,y)∼pθ (y|λ = λ∗)

]
− Cov(λ,y)∼pθ (ψ(λ, y)) .
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On the other hand, the Fisher information of this model at θ is

I(θ) = E
[(
∇θ log pθ(z)

)2
]

= E

(∇θ log
(

exp(θTψ(z))∑
z′∈Ω exp(θTψ(z′))

))2
= E


∇θ log

(
exp(θTψ(z))

)
− ∇θ log

∑
z′∈Ω

exp(θTψ(z′))




2
= E

(ψ(z) −
∑

z′∈Ω ψ(z′) exp(θTψ(z′))∑
z′∈Ω exp(θTψ(z′))

)2
= E

[(
ψ(z) − E

[
ψ(z′)

])2
]

= Cov (ψ(z)) .

Therefore, we can write the second derivative of J as

∇2J(θ) = E(λ∗,y∗)∼D

[
ψ1(λ∗)ψ1(λ∗)T Var(λ,y)∼pθ (y|λ = λ∗)

]
− I(θ).

If we apply the fact that

ψ1(λ∗)ψ1(λ∗)T � I ||ψ1(λ∗)||2 � MI ||ψ1(λ∗)||2∞ � MI,

then we can reduce this to

∇2J(θ) � MIE(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
− I(θ).

This is the desired result. �

Lemma 3. Suppose that we are looking at a data programming distribution, as described

in the text of Lemma 2. Suppose further that we are concerned with some feasible set of

parameters Θ ⊂ RM, such that the any model with parameters in this space satisfies the

following two conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from pθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ̂ that is a function
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of some number D samples from pθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ

and for some c > 0,

Cov
(
θ̂
)
�

I
2cD

.

Second, for any θ, θ∗ ∈ Θ,

E(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
≤

c
M
.

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ∗.

Under these conditions, the function J is strongly concave on Θ with parameter of

strong convexity c.

Proof. From the Cramér-Rao bound, we know in general that the variance of any unbiased

estimator is bounded by the reciprocal of the Fisher information

Cov
(
θ̂
)
� (I(θ))−1 .

Since for the estimator described in the lemma statement, we have D independent samples

from the distribution, it follows that the Fisher information of this experiment is D times

the Fisher information of a single sample. Combining this with the bound in the lemma

statement on the covariance, we get

I
2cD

� Cov
(
θ̂
)
� (DI(θ))−1 .

It follows that

I(θ) � 2cI.

On the other hand, also from the lemma statement, we can conclude that

MIE(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
� cI.
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Therefore, for all θ ∈ Θ,

∇2J(θ) � MIE(λ∗,y∗)∼D

[
Var(λ,y)∼pθ (y|λ = λ∗)

]
− I(θ) � −cI.

This implies that J is strongly concave over Θ, with constant c, as desired. �

Lemma 4. Suppose that we are looking at a data programming maximum likelihood esti-

mation problem, as described in the text of Lemma 2. Suppose further that the objective

function J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true

distribution pθ∗ , where θ∗ ∈ Θ, then if we use step size

η =
cε2

4

and run (using a fresh sample at each iteration) for T steps, where

T =
2

c2ε2 log
(
2 ||θ0 − θ

∗||
2

ε

)
then we can bound the expected parameter estimation error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M.

Proof. First, we note that, in the proof to follow, we can ignore the projection onto the

feasible set Θ, since this projection always takes us closer to the optimum θ∗.

If we track the expected distance to the optimum θ∗, then at the next time step,

||θt+1 − θ
∗||

2
= ||θt − θ

∗||
2

+ 2γ(θt − θ
∗)∇J̃(θt) + γ2

∣∣∣∣∣∣∇J̃t(θt)
∣∣∣∣∣∣2 .

Since we can write our stochastic samples in the form

∇J̃t(θt) = ψ(λt, yt) − ψ(λ̄t, ȳt),
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for some samples λt, yt, λ̄t, and ȳt, we can conclude that

∣∣∣∣∣∣∇J̃t(θt)
∣∣∣∣∣∣2 ≤ M

∣∣∣∣∣∣∇J̃t(θt)
∣∣∣∣∣∣2
∞
≤ 4M.

Therefore, taking the expected value conditioned on the filtration,

E
[
||θt+1 − θ

∗||
2
| Ft

]
= ||θt − θ

∗||
2

+ 2γ(θt − θ
∗)∇J(θt) + 4γ2M.

Since J is strongly concave,

(θt − θ
∗)∇J(θt) ≤ −c ||θt − θ

∗||
2 ;

and so,

E
[
||θt+1 − θ

∗||
2
| Ft

]
≤ (1 − 2γc) ||θt − θ

∗||
2

+ 4γ2M.

If we take the full expectation and subtract the fixed point from both sides,

E
[
||θt+1 − θ

∗||
2
]
−

2γM
c
≤ (1−2γc)E

[
||θt − θ

∗||
2
]
+4γ2M−

2γM
c

= (1−2γc)
(
E

[
||θt − θ

∗||
2
]
−

2γM
c

)
.

Therefore,

E
[
||θt − θ

∗||
2
]
−

2γM
c
≤ (1 − 2γc)t

(
||θ0 − θ

∗||
2
−

2γM
c

)
,

and so

E
[
||θt − θ

∗||
2
]
≤ exp(−2γct) ||θ0 − θ

∗||
2

+
2γM

c
.

In order to ensure that

E
[
||θt − θ

∗||
2
]
≤ ε2,

it therefore suffices to pick

γ =
cε2

4M

and

t =
2M
c2ε2 log

(
2 ||θ0 − θ

∗||
2

ε

)
.

Substituting ε2 → ε2M produces the desired result. �
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Lemma 5. Assume in our model that, without loss of generality, ||φ(x)|| ≤ 1 for all x, and

that in our true modelD, the class y is independent of the features φ(x) given the labels λ.

Suppose that we now want to solve the expected loss minimization problem wherein

we minimize the objective

R(w) = E(x,y)∼D

[
log(1 + exp(−wTφ(x)y))

]
+ ρ ||w||2 .

We actually accomplish this by minimizing our noise-aware loss function, given our chosen

parameter θ̂,

Rθ̂(w) = E(x,y)∼D

[
Eỹ∼pθ̂(·|λ)

[
log(1 + exp(−wTφ(x)ỹ))

]]
+ ρ ||w||2 .

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-

aware loss function, which is only this in expectation. Suppose that doing so produces an

estimate ŵ which satisfies, for some χ > 0,

E
[
Rθ̂(ŵ) −min

w
Rθ̂(w)

]
θ̂ ≤ χ.

(Here, the expectation is taken with respect to only the random variable ŵ.) Then, we can

bound the expected risk with

E
[
R(ŵ) −min

w
R(w)

]
≤ χ +

cε
2ρ
.

Proof. (To simplify the symbols in this proof, we freely use θ when we mean θ̂.)

The loss function we want to minimize is, in expectation,

R(w) = E(x,y)∼D

[
log(1 + exp(−wTφ(x)y))

]
+ ρ ||w||2 .

By the law of total expectation,

R(w) = E(x,y)∼D

[
E(x̄,ȳ)∼D

[
log(1 + exp(−wTφ(x)ȳ))

]]
+ ρ ||w||2 ,
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Since we know from our assumptions that, for the optimum parameter θ∗,

pD(λ, y) = pθ∗(λ, y),

and given our conditional independence assumption, we can rewrite this as

R(w) = E(x,y)∼D

[
Eỹ∼pθ∗ (·|λ)

[
log(1 + exp(−wTφ(x)ỹ))

]]
+ ρ ||w||2 .

On the other hand, if we are minimizing the model we got from the previous step, we will

be actually minimizing

Rθ(w) = E(x,y)∼D

[
Eỹ∼pθ(·|λ)

[
log(1 + exp(−wTφ(x)ỹ))

]]
+ ρ ||w||2 .

We can reduce this further by noticing that

Eỹ∼pθ(·|λ)

[
log(1 + exp(−wTφ(x)ỹ))

]
= Eỹ∼pθ(·|λ)

[
log(1 + exp(−wTφ(x)))

1 + ỹ
2

+ log(1 + exp(wTφ(x)))
1 − ỹ

2

]
=

log(1 + exp(−wTφ(x))) + log(1 + exp(wTφ(x)))
2

+
log(1 + exp(−wTφ(x))) − log(1 + exp(wTφ(x)))

2
Eỹ∼pθ(·|λ)

[
ỹ
]

=
log(1 + exp(−wTφ(x))) + log(1 + exp(wTφ(x)))

2

−
wTφ(x)

2
Eỹ∼pθ(·|λ)

[
ỹ
]
.

It follows that the difference between the loss functions will be

|R(w) − Rθ(w)| =

∣∣∣∣∣∣E(x,y)∼D

[
wTφ(x)

2

(
Eỹ∼pθ(·|λ)

[
ỹ
]
− Eỹ∗∼pθ∗ (·|λ)

[
ỹ∗

])]∣∣∣∣∣∣ .
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Now, we can compute that

∇θEỹ∼pθ(·|λ)
[
ỹ
]

= ∇θ
exp(θTψ(λ, 1)) − exp(θTψ(λ,−1))
exp(θTψ(λ, 1)) + exp(θψ(λ,−1))

= ∇θ
exp(θTψ1(λ)) − exp(−θTψ1(λ))
exp(θTψ1(λ)) + exp(θTψ1(λ))

= ∇θ tanh(θTψ1(λ))

= ψ1(λ)
(
1 − tanh2(θTψ1(λ))

)
= ψ1(λ)Varỹ∼pθ(·|λ) (ỹ|.)

It follows by the mean value theorem that for some θ̃, a linear combination of θ and θ∗,

|R(w) − Rθ(w)| =

∣∣∣∣∣∣E(x,y)∼D

[
wTφ(x)

2
(θ − θ∗)Tψ1(λ)Varỹ∼pθ̃(·|λ) (ỹ)

]∣∣∣∣∣∣ .
Since Θ is convex, clearly θ̃ ∈ Θ. From our assumption on the bound of the variance, we

can conclude that

E(x,y)∼D

[
Varỹ∼pθ̃(·|λ) (ỹ)

]
≤

c
M
.

By the Cauchy-Schwarz inequality,

|R(w) − Rθ(w)| ≤
1
2

∣∣∣∣E(x,y)∼D

[
||w|| ||φ(x)|| ||θ − θ∗|| ||ψ1(λ)||Varỹ∼pθ̃(·|λ) (ỹ)

]∣∣∣∣ .
Since (by assumption) ||φ(x)|| ≤ 1 and ||ψ1(λ)|| ≤

√
M,

|R(w) − Rθ(w)| ≤
||w|| ||θ − θ∗||

√
M

2

∣∣∣∣E(x,y)∼D

[
Varỹ∼pθ̃(·|λ) (ỹ)

]∣∣∣∣
≤
||w|| ||θ − θ∗||

√
M

2
·

c
M

=
c ||w|| ||θ − θ∗||

2
√

M
.

Now, for any w that could conceivably be a solution, it must be the case that

||w|| ≤
1

2ρ
,
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since otherwise the regularization term would be too large Therefore, for any possible

solution w,

|R(w) − Rθ(w)| ≤
c ||θ − θ∗||

4ρ
√

M
.

Now, we apply the assumption that we are able to solve the empirical problem, producing

an estimate ŵ that satisfies

E
[
Rθ(ŵ) − Rθ(w∗θ)

]
≤ χ,

where w∗θ is the true solution to

w∗θ = arg min
w

Rθ(w).

Therefore,

E [R(ŵ) − R(w∗)] = E
[
Rθ(ŵ) − Rθ(w∗θ) + Rθ(w∗θ) − Rθ(ŵ) + R(ŵ) − R(w∗)

]
≤ χ + E [Rθ(w∗) − Rθ(ŵ) + R(ŵ) − R(w∗)]

≤ χ + E [|Rθ(w∗) − R(w∗)| + |Rθ(ŵ) − R(ŵ)|]

≤ χ + E

c ||θ − θ∗||

2ρ
√

M


= χ +

c

2ρ
√

M
E [||θ − θ∗||]

≤ χ +
c

2ρ
√

M

√
E

[
||θ − θ∗||2

]
.

We can now bound this using the result of Lemma 4, which results in

E [l(ŵ) − l(w∗)] ≤ χ +
c

2ρ
√

M

√
Mε2

= χ +
cε
2ρ
.

This is the desired result. �
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B.5 Proofs of Results for the Independent Model

To restate, in the independent model, the variables are, as before, λ ∈ {−1, ∅, 1}m and

y ∈ {−1, 1}, where for simplicity in this section we let ∅ = 0. The sufficient statistics are

λ jy and λ2
j . That is, for expanded parameter θ = (θacc, θcov),

pθ(λ, y) =
1
Zθ

exp((θacc)Tλy + (θcov)Tλ2).

This can be combined with the simple assumption that P(y) = 1
2 to complete a whole

distribution. Using this, we can prove the following simple result about the moments of the

sufficient statistics.

Lemma 6. The expected values and covariances of the sufficient statistics are, for all j , i,

E
[
λ jy

]
= β jγ j

E
[
λ2

j

]
= β j

Var
(
λ jy

)
= β j − β

2
jγ

2
j

Var
(
λ2

j

)
= β j − β

2
j

Cov
(
λ jy, λiy

)
= 0

Cov
(
λ2

j , λ
2
i

)
= 0

Cov
(
λ jy, λ2

i

)
= 0.

We also prove the following basic lemma that relates θacc
j to γi.

Lemma 7. It holds that

γ j = tanh(θacc
j ).

We also make the following claim about feasible models.

Lemma 8. For any feasible model, it will be the case that, for any other feasible parameter

vector θ̂,

p
(
(θ̂acc)Tλy ≤

m
2
γmin(γβ)min

)
≤ exp

(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

)
.

We can also prove the following simple result about the conditional covariances
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Lemma 9. The covariances of the sufficient statistics, conditioned on λ, are for all j , j,

Cov
(
λ jy, λiy | λ

)
= λ jλi sech2((θacc)Tλ)

Cov
(
λ2

j , λ
2
i | λ

)
= 0.

We can combine these two results to bound the expected variance of these conditional

statistics.

Lemma 10. If θ and θ∗ are two feasible models, then for any u,

Eθ∗
[
Varθ (y | λ)

]
≤ 3 exp

(
−

mβ2
minγ

3
min

8 artanh(γmax)

)
.

We can now proceed to restate and prove the main corollary of Theorem 5 that applies

in the independent case.

Corollary 2. Suppose that we run Algorithm 5 on an independent data programming spec-

ification that satisfies conditions (B.4), (B.5), (B.6), and (B.7). Furthermore, assume that

the number of labeling functions we use satisfies

m ≥
9.34 artanh(γmax)

(γβ)minγ
2
min

log
(
24m
βmin

)
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε

2

16

and our dataset is of a size n = |XU | that satisfies

n =
32

β2
minε

2
log

(
2 ||θ0 − θ

∗||
2

ε

)
.

Then, we can bound the expected parameter error with

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣2] ≤ ε2M
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and the expected risk with

E
[
R(ŵ) −min

w
R(w)

]
≤ χ +

βminε

8ρ
.

Proof. In order to apply Theorem 5, we have to verify all its conditions hold in the inde-

pendent case.

First, we notice that (B.2) is used only to bound the covariance of the sufficient statistics.

From Lemma 6, we know that these can be bounded by β j − β
2
jγ

2
j ≥

βmin
2 . It follows that we

can choose

c =
βmin

4
,

and we can consider (B.2) satisfied, for the purposes of applying the theorem.

Second, to verify (B.3), we can use Lemma 10. For this to work, we need

3 exp
(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

)
≤

c
M

=
βmin

8m
.

This happens whenever the number of labeling functions satisfies

m ≥
9.34 artanh(γmax)

(γβ)minγ
2
min

log
(
24m
βmin

)
.

The remaining assumptions, (B.4), (B.5), (B.6), and (B.7), are satisfied directly by the

assumptions of this corollary. So, we can apply Theorem 5, which produces the desired

result. �
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B.6 Proofs of Independent Model Lemmas

Lemma 6. The expected values and covariances of the sufficient statistics are, for all j , i,

E
[
λ jy

]
= β jγ j

E
[
λ2

j

]
= β j

Var
(
λ jy

)
= β j − β

2
jγ

2
j

Var
(
λ2

j

)
= β j − β

2
j

Cov
(
λ jy, λiy

)
= 0

Cov
(
λ2

j , λ
2
i

)
= 0

Cov
(
λ jy, λ2

i

)
= 0.

Proof. We prove each of the statements in turn. For the first statement,

E
[
λ jy

]
= pθ(λ j = y) − pθ(λ j , y)

= β j
1 + γ j

2
− β j

1 − γ j

2
= β jγ j.

For the second statement,

E
[
λ2

j

]
= pθ(λ j = y) + pθ(λ j = −y)

= β j
1 + γ j

2
+ β j

1 − γ j

2
= β j.

For the remaining statements, we derive the second moments; converting these to an ex-

pression of the covariance is trivial. For the third statement,

Var
(
λ jy

)
= E

[
(λ jy)2

]
− E

[
λ jy

]2
= E

[
λ2

jy
2
]
− β2

jγ
2
j = E

[
λ2

j

]
− β2

jγ
2
j = βi − β

2
jγ

2
j
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For the fourth statement,

E
[
(λ2

j)
2
]
− E

[
λ2

j

]2
= E

[
λ4

j

]
− β2

j = E
[
λ2

j

]
− β2

j = βi − β
2
j

For subsequent statements, we first derive that

E
[
λ jy | y

]
= β j

1 + γ j

2
− β j

1 − γ j

2
= β jγ j

and

E
[
λ2

j | y
]

= β j
1 + γ j

2
+ β j

1 − γ j

2
= β j.

Now, for the fifth statement,

E
[
(λ jy)(λiy)

]
= E

[
E

[
λ jy | y

]
E

[
λiy | y

]]
= β jγ jβiγi.

For the sixth statement,

E
[
(λ2

j)(λ
2
i )
]

= E
[
E

[
λ2

j | y
]
E

[
λ2

i | y
]]

= β jβi.

Finally, for the seventh statement,

E
[
(λ jy)(λ2

i )
]

= E
[
E

[
λ jy | y

]
E

[
λ2

j | y
]]

= β jγ jβi.

This completes the proof. �

Lemma 7. It holds that

γ j = tanh(θacc
j ).

Proof. From the definitions,

β j =
exp(θacc

j + θcov
j ) + exp(−θacc

j + θcov
j )

exp(θacc
j + θcov

j ) + exp(−θacc
j + θcov

j ) + 1

and

β jγ j =
exp(θacc

j + θcov
j ) − exp(−θacc

j + θcov
j )

exp(θacc
j + θcov

j ) + exp(−θacc
j + θcov

j ) + 1
.
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Therefore,

γ j =
exp(θacc

j + θcov
j ) − exp(−θacc

j + θcov
j )

exp(θacc
j + θcov

j ) + exp(−θacc
j + θcov

j )
= tanh(θacc

j ),

which is the desired result. �

Lemma 8. For any feasible model, it will be the case that, for any other feasible parameter

vector θ̂,

p
(
(θ̂acc)Tλy ≤

m
2
γmin(γβ)min

)
≤ exp

(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

)
.

Proof. We start by noticing that

(θ̂acc)Tλy =

m∑
i=1

θ̂acc
j λ jy.

Since in this model, all the λ jy are independent of each other, we can bound this sum using

a concentration bound. First, we note that

∣∣∣θ̂acc
j λ jy

∣∣∣ ≤ θ̂acc
j .

Second, we note that

E
[
θ̂acc

j λ jy
]

= θ̂acc
j β jγ j

and

Var
(
θ̂acc

j λ jy
)

= (θ̂acc
j )2

(
β j − β

2
jγ

2
j

)
but ∣∣∣θ̂acc

j λ jy
∣∣∣ ≤ θ̂acc

j ≤ artanh(γmax) , θ̂acc
max

because, for feasible models, by definition

γmin ≤ artanh(γmin) ≤ θ̂acc
j ≤ artanh(γmax).

Therefore, applying Bernstein’s inequality gives us, for any t,

pθ̂

 m∑
i=1

θ̂acc
j λ jy −

m∑
i=1

θ̂acc
j β jγ j ≤ −t

 ≤ exp

− 3t2

6
∑m

i=1(θ̂acc
j )2γ jβ jγ j + 2θ̂acc

maxt

 .
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It follows that, if we let

t =
1
2

m∑
i=1

θ̂acc
j β jγ j,

then we get

pθ̂

 m∑
i=1

θ̂acc
j λ jy −

m∑
i=1

θ̂acc
j β jγ j ≤ −t

 ≤ exp

− 3
(

1
2

∑m
i=1 θ̂

acc
j β jγ j

)2

6
∑m

i=1(θ̂acc
j )2γ jβ jγ j + 2θ̂acc

max

(
1
2

∑m
i=1 θ̂

acc
j β jγ j

)


≤ exp

− 3
∑m

i=1 θ̂
acc
j β jγ j

24γmaxθ̂acc
max + 4θ̂acc

max


≤ exp

(
−

3m(1 − γmax)
28θ̂acc

max

)

≤ exp

− 3
(∑m

i=1 θ̂
acc
j β jγ j

)2

24
∑m

i=1(θ̂acc
j )2β j + 4θ̂acc

max

(∑m
i=1 θ̂

acc
j β jγ j

)


≤ exp

− 3γmin

(∑m
i=1 θ̂

acc
j β j

) (∑m
i=1 θ̂

acc
j β jγ j

)
24θ̂acc

max
∑m

i=1 θ̂
acc
j β j + 4θ̂acc

max

(∑m
i=1 θ̂

acc
j β j

)
≤ exp

−3γmin

(∑m
i=1 θ̂

acc
j β jγ j

)
28θ̂acc

max


≤ exp

(
−

mγ2
min(γβ)min

9.34θ̂acc
max

)
.

This is the desired expression. �

Lemma 9. The covariances of the sufficient statistics, conditioned on λ, are for all j , j,

Cov
(
λ jy, λiy | λ

)
= λ jλi sech2((θacc)Tλ)

Cov
(
λ2

j , λ
2
i | λ

)
= 0.

Proof. The second result is obvious, so it suffices to prove only the first result. Clearly,

Cov
(
λ jy, λiy

∣∣∣λ) = λ jλiVar (y|λ) = λ jλi

(
1 − E

[
y | λ

]2
)
.
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Plugging into the distribution formula lets us conclude that

E
[
y | λ

]
=

exp((θacc)Tλ + (θcov)Tλ2) − exp(−(θacc)Tλ + (θcov)Tλ2)
exp((θacc)Tλ + (θcov)Tλ2) + exp(−(θacc)Tλ + (θcov)Tλ2)

= tanh2((θacc)Tλ),

and so

Cov
(
λ jy, λiy

∣∣∣λ) = λ jλi

(
1 − tanh2((θacc)Tλ)

)
= ΛiΛ j sech2((θacc)Tλ),

which is the desired result. �

Lemma 10. If θ and θ∗ are two feasible models, then for any u,

Eθ∗
[
Varθ (y | λ)

]
≤ 3 exp

(
−

mβ2
minγ

3
min

8 artanh(γmax)

)
.

Proof. First, we note that, by the result of Lemma 9,

Varθ (y|λ) = sech2((θacc)Tλ).

Therefore,

Eθ∗
[
Varθ (y|λ)

]
= Eθ∗

[
sech2((θacc)Tλ)

]
.

Applying Lemma 8, we can bound this with

Eθ∗
[
Varθ

(
uTλy

∣∣∣λ)] ≤ (
sech2

(m
2

(γβ)minγ
2
min

)
+ exp

(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

))
≤

(
2 exp

(
−

m
2

(γβ)minγ
2
min

)
+ exp

(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

))
≤ 3 exp

(
−

m(γβ)minγ
2
min

9.34 artanh(γmax)

)
.

This is the desired expression. �



Appendix C

Proofs: Matrix Completion-Style
Approach

In this section, we focus on theoretical results for the basic rank-one model considered

in the main body of the paper. In Section C.1, we provide additional interpretation for

the expression of our primary theoretical result bounding the estimation error of the label

model. In Section C.2, we provide the proof of Corollary 1. In Section C.3, we then provide

the proof of Theorem 1, connecting this estimation error to the generalization error of the

end model; and in Section C.4, we provide the full proof of the main bound.

C.1 Interpreting the Main Bound

We re-state Theorem 4, which bounds the average error on the estimate of the label model

parameters, providing more detail on and interpreting the terms of the bound.

Theorem 4. Let θ̂ be an estimate of θ∗ produced by Algorithm 1 run over n unlabeled data

points. Let a :=
(

dO
ΣS

+
(

dO
ΣS

)2
λmax(KO)

) 1
2

and b := ‖Σ−1
O ‖

2

(Σ−1
O )min

. Then, we have:

E
[∣∣∣∣∣∣θ̂ − θ∗∣∣∣∣∣∣] ≤ 16(|Y| − 1)d2

O

√
32π

n
abσmax(M+

Ω)
(
3
√

dOaλ−1
min(ΣO) + 1

) (
κ(ΣO) + λ−1

min(ΣO)
)
.

191
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Influence of σmax(M+
Ω

) the largest singular value of the pseudoinverse M+
Ω

. Note that

‖M+
Ω
‖2 = (λmin(MT

Ω
MΩ))−1. As we shall see below, λmin(MT

Ω
MΩ) measures a quantity related

to the structure of the graph Ginv. The smaller this quantity, the more information we have

about Ginv, and the easier it is to estimate the accuracies. The smallest value of ‖M+
Ω
‖2

(corresponding to the largest value of the eigenvalue) is ∼ 1
√

m ; the square of this quantity

in the bound reduces the m2 cost of estimating the covariance matrix to m.

It is not hard to see that

MT
ΩMΩ = diag(deg(Ginv)) + Adj(Ginv).

Here, deg(Ginv) are the degrees of the nodes in Ginv and Adj(Ginv) is its adjacency matrix.

This form closely resembles the graph Laplacian, which differs in the sign of the adjacency

matrix term: L(G) = diag(deg(G)) − Adj(G). We bound

σmax(M+
Ω) ≤

(
dmin + λmin(Adj(Ginv)))

)−1 ,

where dmin is the lowest-degree node in Ginv (that is, the labeling function with fewest

appearances in Ω). In general, computing λmin(Adj(Ginv))) can be challenging. A closely

related task can be done via Cheeger inequalities, which state that

2hG ≥ λmin(L(G)) ≥
1
2

h2
G,

where λmin(L(G)) is the smallest non-zero eigenvalue of L(G) and

hG = min
X

|E(X, X̄)|

min
{∑

x∈X dx,
∑

y∈X̄ dy

}
is the Cheeger constant of the graph [Chung, 1996]. The utility of the Cheeger constant is

that it measures the presence of a bottleneck in the graph; the presence of such a bottleneck

limits the graph density and is thus beneficial when estimating the structure in our case.

Our Cheeger-constant like term σmax(M+
Ω

) acts the same way.

Now, in the easiest and most common case is that of conditionally independent labeling

functions [Dalvi et al., 2013; Zhang et al., 2016b; Dalvi et al., 2013; Karger et al., 2011].,
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Adj(Ginv) has 1’s everywhere but the diagonal, and we can compute explicitly that

σmax(M+
Ω) =

1
√

m − 2
.

In the general setting, we must compute the minimal eigenvalue of the adjacency matrix,

which is tractable, for example, for tree structures.

Influence of λmin(ΣO) the smallest eigenvalue of the observed matrix. This quantity re-

flects the conditioning of the observed (correlation) matrix; the better conditioned the ma-

trix, the easier it is to estimate ΣO.

Influence of (Σ−1
O )min the smallest entry of the inverse observed matrix. This quantity

contributes to Σ−1, the generalized precision matrix that we centrally use; it is a measure of

the smallest non-zero correlation between labeling function accuracies (that is, the smallest

correlation between non-independent labeling function accuracies). Note that the tail bound

of Theorem 4 scales as exp(−((Σ−1
O )min)2). This is natural, as distinguishing between small

correlations and independencies requires more samples.

C.2 Proof of Corollary 1

Corollary 1. Let U = O ∪ S. Let ΣU be the generalized covariance matrix for U. Then

(Σ−1
U )i, j = 0 whenever i, j correspond to cliques C1,C2 respectively such that C1,C2 are not

subsets of the same maximal clique.

Proof: We partition the cliques C into two sets, U and W = C \ U. Let Σ be the full

generalized covariance matrix (i.e. including all maximal and non-maximal cliques) and

Γ = Σ−1. Thus we have:

Σ =

 ΣU ΣUW

ΣT
UW ΣW

 Σ−1 = Γ =

 KU KUW

KT
UW KW

 .
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By the block matrix inversion lemma we have:

Σ−1
U = KU − KUW K−1

W KT
UW .

We now follow the proof structure of Corollary 1 of [Loh and Wainwright, 2013]. We know

KU is graph structured by Theorem 1 of [Loh and Wainwright, 2013]. Next, using the same

argument as in the proof of Corollary 1 of [Loh and Wainwright, 2013], we know that

KW , and therefore K−1
W , is block-diagonal. Intuitively, because the set U contains all of the

separator set cliques, and due to the running intersection property of a junction tree, each

clique in W belongs to precisely one maximal clique- leading to block diagonal structure

of KW . We thus need only to show that the following quantity is zero for two cliques Ci,C j

that are not subsets of the same maximal clique, with corresponding indices i, j:

(
KUW K−1

W KT
UW

)
i, j

=
∑

B

(KUW)i,B(K−1
W )B,B(KT

UW)B, j,

where B are the indices corresponding to the blocks in K−1
W , which correspond to maximal

cliques. Our argument follows again as in Corollary 1 of [Loh and Wainwright, 2013]:

since U contains the separator sets, if the two cliques C1,C2 are not subsets of the same

maximal clique, then for each B, either (KUW)i,B or (KT
UW)B, j must be zero, completing the

proof.

C.3 Proof of Theorem 1

Let D be the true data generating distribution, such that (x, y) ∼ D. Let pθ(y|λ) be the

label model parameterized by θ and conditioned on the observed labeling function labels

λ. Furthermore, assume that:

1. For some optimal label model parameters θ∗, pθ∗(λ, y) = pD(λ, y);

2. The label y is independent of the features of our end model given the labeling function

labels λ

That is, we assume that (i) the optimal label model, parameterized by θ∗, correctly matches



APPENDIX C. PROOFS: MATRIX COMPLETION-STYLE APPROACH 195

the true distribution of labeling function labels λ drawn from the true distribution; and (ii)

that these labels λ provide sufficient information to discern the label y. We note that these

assumptions are the same ones used in Appendix B, and are intended primarily to illustrate

the connection between the estimation accuracy of θ̂, which we bound in Theorem 4, and

the end model performance.

Now, suppose that we have an end model parameterized by w, hw : X 7→ Y, and

that to learn these parameters we minimize a normalized bounded loss function l(hw(x), y),

such that without loss of generality, l(hw(x), y) ≤ 1. Normally our goal would be to find

parameters that minimize the expected loss or risk, which we denote w∗:

w∗ = argminw R(w) = argminw E(x,y)∼D
[
l(hw(x), y)

]
(C.1)

However, since we do not have access to the true labels y, we instead minimize the expected

noise-aware loss, producing an estimate w̃:

w̃ = argminw Rθ(w) = argminw E(x,y)∼D

[
Eỹ∼pθ(·|λ)

[
l(hw(x), ỹ)

]]
(C.2)

In practice, we actually minimize the empirical version of the noise aware loss over an

unlabeled dataset XU = {x(1), . . . , x(n)}, producing an estimate ŵ:

ŵ = argminw R̂θ(w) = argminw
1
n

n∑
i=1

Eỹ∼pθ(·|λ(i))

[
l(hw(x(i)), ỹ)

]
. (C.3)

Let w∗ be the minimizer of the expected loss R, let w̃ be the minimizer of the noise-aware

loss for estimated label model parameters θ, Rθ, and let ŵ be the minimizer of the empirical

noise aware loss R̂θ. Our goal is to bound the generalization risk- the difference between

the expected loss of our empirically estimated parameters and of the optimal parameters,

R(ŵ) − R(w∗). (C.4)

Additionally, since analyzing the empirical risk minimization error is standard and not

specific to our setting, we simply assume that the error |Rθ(w̃) − Rθ(ŵ)| ≤ γ(n), where γ(n)

is a decreasing function of the number of unlabeled data points n.
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To start, using the law of total expectation first, followed by our assumption (2) about

conditional independence, and finally using our assumption (1) about our optimal label

model θ∗, we have that:

R(w) = E(x′,y′)∼D [R(w)]

= E(x′,y′)∼D

[
E(x,y)∼D

[
l(hw(x′), y)|x = x′

]]
= E(x′,y′)∼D

[
E(x,y)∼D

[
l(hw(x′), y)|λ(x) = λ(x′)

]]
= E(x′,y′)∼D

[
Eỹ∼pθ∗ (·|λ)

[
l(hw(x′), ỹ)

]]
= Rθ∗(w).

Now, we have:

R(ŵ) − R(w∗) = Rθ∗(ŵ) + Rθ(ŵ) − Rθ(ŵ) + Rθ(w̃) − Rθ(w̃) − Rθ∗(w∗)

≤ Rθ∗(ŵ) + Rθ(ŵ) − Rθ(ŵ) + Rθ(w∗) − Rθ(w̃) − Rθ∗(w∗)

≤ |Rθ(ŵ) − Rθ(w̃)| + |Rθ∗(ŵ) − Rθ(ŵ)| + |Rθ(w∗) − Rθ∗(w∗)|

≤ γ(n) + 2 max
w′
|Rθ∗(w′) − Rθ(w′)|,

where in the first step we use our result that R = Rθ∗ as well as add and subtract terms; and

in the second step we use the fact that Rθ(w̃) ≤ Rθ(w∗). We now have our generalization

risk controlled primarily by |Rθ∗(w′)−Rθ(w′)|, which is the difference between the expected

noise aware losses given the estimated label model parameters θ and the true label model

parameters θ∗. Next, we see that, for any w′:

|Rθ∗(w′) − Rθ(w′)| =
∣∣∣∣E(x,y)∼D

[
Eỹ∼pθ∗ (·|λ)

[
l(hw(x), ỹ)

]
− Eỹ∼pθ(·|λ)

[
l(hw(x), ỹ)

]]∣∣∣∣
=

∣∣∣∣∣∣∣∣E(x,y)∼D

∑
y′∈Y

l(hw(x), y′)
(
pθ∗(y′ | λ) − pθ(y′ | λ)

)
∣∣∣∣∣∣∣∣

≤
∑
y′∈Y

E(x,y)∼D
[
|pθ∗(y′ | λ) − pθ(y′ | λ)|

]
≤ |Y|max

y′
E(x,y)∼D

[
|pθ∗(y′ | λ) − pθ(y′ | λ)|

]
,
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where we have now bounded |Rθ∗(w′) − Rθ(w′)| by the size of the structured output space

|Y|, and a term having to do with the difference between the probability distributions of θ

and θ∗.

Now, we use the result from [Honorio, 2012] (Lemma 19) which establishes that the log

probabilities of discrete factor graphs with indicator features (such as our model pθ(λ, y))

are (l∞, 2)-Lipschitz with respect to their parameters, and the fact that for x, y s.t. |x|, |y| ≤ 1,

|x − y| ≤ | log(x) − log(y)|, to get:

|pθ∗(y′ | λ) − pθ(y′ | λ)| ≤
∣∣∣log pθ∗(y′ | λ) − log pθ(y′ | λ)

∣∣∣
≤

∣∣∣log pθ∗(λ, y′) − log pθ(λ, y′)
∣∣∣ +

∣∣∣log pθ∗(λ) − log Pθ(λ
∣∣∣

≤ 2 ||θ∗ − θ||∞ + 2 ||θ∗ − θ||∞

≤ 4 ||θ∗ − θ|| ,

where we use the fact that the statement of Lemma 19 also holds for every marginal distri-

bution as well. Therefore, we finally have:

R(ŵ) − R(w∗) ≤ γ(n) + 4|Y| ||θ∗ − θ|| .

C.4 Proof of Theorem 4

Proof: First we briefly provide a road map of the proof of Theorem 4. We consider esti-

mating θ̃ with our procedure in the rank-one setting, and we seek a tail bound on ‖θ̃ − θ‖.

The challenge here is that the observed matrix ΣO we see is itself constructed from a series

of observed i.i.d. samples ψ(O)(1), . . . , ψ(O)(n). We bound (through a matrix concentration

inequality) the error ∆O = Σ̃O − ΣO, and view ∆O as a perturbation of ΣO. Afterwards, we

use a series of perturbation analyses to ultimately bound ‖Σ̃OS − ΣOS‖, and then use this

directly to bound ‖θ̃ − θ‖; each of the perturbation results is in terms of ∆O.

We begin with some notation. We write the following perturbations (note that all the
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terms written with ∆ are additive, while the δ term is relative)

Σ̃OS = ΣOS + ∆OS,

Σ̃O = ΣO + ∆O,

˜̀ = ` + ∆`,

z̃ = (I + diag(δz))z.

Now we start our perturbation analysis:

Σ̃OS =
1
√

c̃
Σ̃Oz̃ =

1
√

c̃
(ΣO + ∆O)(I + diag(δz))z

=
1
√

c̃

(
ΣOz + ΣOdiag(δz)z + ∆O(I + diag(δz))z

)
.

Subtracting ΣOS = 1
√

cΣOz, we get

∆OS =

(
1
√

c̃
−

1
√

c

)
ΣOz +

1
√

c̃

(
ΣOdiag(δz)z + ∆O(I + diag(δz))z

)
. (C.5)

The rest of the analysis requires us to bound the norms for each of these terms.

Left-most term. We have that∥∥∥∥∥∥
(

1
√

c̃
−

1
√

c

)
ΣOz

∥∥∥∥∥∥ =

∣∣∣∣∣∣
√

c
√

c̃
− 1

∣∣∣∣∣∣
∥∥∥∥∥∥ 1
√

c
ΣOz

∥∥∥∥∥∥ =

∣∣∣∣∣∣
√

c
√

c̃
− 1

∣∣∣∣∣∣ ‖ΣOS‖ ≤
√

dO

∣∣∣∣∣∣
√

c
√

c̃
− 1

∣∣∣∣∣∣ ≤ √
dO|c̃ − c|.

Here, we bounded ‖ΣOS‖ by
√

dO, since ΣOS ∈ [−1, 1]dO . Then, note that c = Σ−1
S

(1 +

zT ΣOz) ≥ 0, since ΣS < 1 and ΣO � 0 =⇒ zT ΣOz ≥ 0, so therefore c, c̃ ≥ 1. In the last

inequality, we use this to imply that |
√

c/
√

c̃ − 1| ≤ |
√

c −
√

c̃| ≤ |c̃ − c|. Next we work on
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bounding |c̃ − c|. We have

|c̃ − c| = |Σ−1
S
||z̃T Σ̃Oz̃ − zT ΣOz|

= |Σ−1
S
||zT (I + diag(δz))T (ΣO + ∆O)(I + diag(δz))z − zT ΣOz|

= |Σ−1
S
||zT ΣOdiag(δz)z + zT ∆O(I + diag(δz))z + zT diag(δz)T (ΣO + ∆O)(I + diag(δz))z|

≤ |Σ−1
S
|‖z‖2

(
‖ΣO‖

(
2‖δz‖ + ‖δz‖

2
)

+ ‖∆O‖
(
2‖δz‖ + ‖δz‖

2 + 1
))

≤ ‖z‖2
(
‖ΣO‖

(
2‖δz‖ + ‖δz‖

2
)

+ ‖∆O‖
(
2‖δz‖ + ‖δz‖

2 + 1
))
.

Thus,∥∥∥∥∥∥
(

1
√

c̃
−

1
√

c

)
ΣOz

∥∥∥∥∥∥ ≤ √
dO‖z‖2

(
‖ΣO‖

(
2‖δz‖ + ‖δz‖

2
)

+ ‖∆O‖
(
2‖δz‖ + ‖δz‖

2 + 1
))
. (C.6)

Bounding c. We will need a bound on c to bound z. We have that

c = (ΣS − ΣT
OSΣ

−1
O ΣOS)−1.

Applying the Woodbury matrix inversion lemma, we have:

c = Σ−1
S

+ Σ−1
S

ΣT
OS

(
ΣO − ΣOSΣ

−1
S

ΣT
OS

)−1
ΣOSΣ

−1
S

Now, by the blockwise inversion lemma, we know that

KO =
(
ΣO − ΣOSΣ

−1
S

ΣT
OS

)−1

So we then have:

c = Σ−1
S

+ Σ−1
S

ΣT
OSKOΣOSΣ

−1
S
≤ Σ−1

S
+ (Σ−1

S
)2‖ΣOS‖

2‖KO‖
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Bounding z. We’ll use our bound on c, since z =
√

cΣ−1
O ΣOS.

‖z‖ = ‖
√

cΣ−1
O ΣOS‖

≤
(
Σ−1
S

+ (Σ−1
S

)2‖ΣOS‖
2‖KO‖

) 1
2
‖Σ−1

O ‖‖ΣOS‖

≤
(
Σ−1
S

+ (Σ−1
S

)2dO‖KO‖
) 1

2
‖Σ−1

O ‖
√

dO

=
dO

ΣS

(
ΣS

dO
+ λmax(KO)

) 1
2

λ−1
min(ΣO)

In the last inequality, we used the fact that ‖ΣOS‖
2 ≤ dO. Now we want to control ‖∆`‖.

Perturbation bound. We have the perturbation bound

‖∆`‖ ≤ ‖M+
Ω‖‖q̃S − qS ‖. (C.7)

We need to work on the term ‖q̃S − qS ‖. To avoid overly heavy notation, we write

P = Σ−1
O , P̃ = Σ̃−1

O , and ∆P = P − P̃. Then we have:

‖q̃S − qS ‖
2 =

∑
(i, j)∈S

(
log(P̃2

i, j) − log(P2
i, j)

)2

= 4
∑

(i, j)∈S

(
log(|P̃i, j|) − log(|Pi, j|)

)2

= 4
∑

(i, j)∈S

(
log(|Pi, j + (∆P)i, j|) − log(|Pi, j|)

)2

≤ 4
∑

(i, j)∈S

[
log

(
1 +

∣∣∣∣∣∣ (∆P)i, j

Pi, j

∣∣∣∣∣∣
)]2

≤ 8
∑

(i, j)∈S

(
|(∆P)i, j|

|Pi, j|

)2

≤
8

P2
min

∑
(i, j)∈S

(∆P)2
i, j

≤
8‖Σ̃−1

O − Σ−1
O ‖

2

((Σ−1
O )min)2

.

Here, the second inequality uses (log(1 + x))2 ≤ x2, and the fourth inequality sums over
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squared values. Next, we use the perturbation bound ‖Σ̃−1
O − Σ−1

O ‖ ≤ ‖Σ
−1
O ‖

2‖∆O‖, so that we

have

‖q̃S − qS ‖ ≤
2
√

2‖Σ−1
O ‖

2‖∆O‖

(Σ−1
O )min

.

Then, plugging this into (C.7), we get that

‖∆`‖ ≤ σmax(M+
Ω)

2
√

2‖Σ−1
O ‖

2‖∆O‖

(Σ−1
O )min

. (C.8)

Bounding δz. Note also that ‖∆`‖
2 =

∑m
i=1(log(z̃2

i ) − log(z2
i )). We have that

‖∆`‖
2 =

m∑
i=1

log
(
z̃2

i

z2
i

)
= 2

m∑
i=1

log
(
|z̃i|

|zi|

)
= 2

m∑
i=1

log(1 + |(δz)i|),

≥ 2
m∑

i=1

(δz)2
i

= 2‖δz‖
2,

where in the fourth step, we used the bound log(1 + a) ≥ a2 for small a. Then, we have

‖δz‖ ≤

√
2‖Σ−1

O ‖
2‖∆O‖

(Σ−1
O )min

σmax(M+
Ω). (C.9)
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Putting it together. Using (C.5), we have that

‖∆OS‖ =

∥∥∥∥∥∥
(

1
√

c̃
−

1
√

c

)
ΣOz +

1
√

c̃

(
ΣOdiag(δz)z + ∆O(I + diag(δz))z

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
√

c̃
−

1
√

c

)
ΣOz

∥∥∥∥∥∥ +
(
‖ΣOdiag(δz)‖ + ‖∆O(I + diag(δz))‖

)
‖z‖

≤
√

dO‖z‖2
(
‖ΣO‖

(
2‖δz‖ + ‖δz‖

2
)

+ ‖∆O‖
(
2‖δz‖ + ‖δz‖

2 + 1
))

+ ‖ΣO‖‖δz‖‖z‖ + ‖∆O‖‖z‖(1 + ‖δz‖)

≤
√

dO‖z‖2 (3‖ΣO‖‖δz‖ + 3‖∆O‖‖δz‖ + ‖∆O‖)

+ ‖ΣO‖‖δz‖‖z‖ + ‖∆O‖‖z‖(1 + ‖δz‖)

≤ ‖z‖
(
3
√

dO‖z‖ + 1
)

((‖ΣO‖ + ‖∆O‖)‖δz‖ + ‖∆O‖)

Where in the first inequality, we use the triangle inequality and the fact that c̃ > 1, and in

the third inequality, we relied on the fact that we can control ‖δz‖ (through ‖∆O‖) so that we

can make it small enough and thus take ‖δz‖
2 ≤ ‖δz‖. Now we can plug in our bounds on

‖z‖ and ‖δz‖ from before:

‖∆OS‖ ≤

dO

ΣS

(
ΣS

dO
+ λmax(KO)

) 1
2

λ−1
min(ΣO)


3 √

dO

dO

ΣS

(
ΣS

dO
+ λmax(KO)

) 1
2

λ−1
min(ΣO)

 + 1


×

(‖ΣO‖ + ‖∆O‖)


√

2‖Σ−1
O ‖

2‖∆O‖

(Σ−1
O )min

σmax(M+
Ω)

 + ‖∆O‖


For convenience, we set ‖∆O‖ = t. Recall that

a =

dO

ΣS
+

(
dO

ΣS

)2

λmax(KO)
 1

2

and

b =
‖Σ−1

O ‖
2

(Σ−1
O )min

.
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Then, we have

‖∆OS‖ ≤ (3
√

dOaλ−1
min(ΣO) + 1)

(
√

2abκ(ΣO)σmax(M+
Ω)t +

√
2ab

σmax(M+
Ω

)
λmin(ΣO)

t2 + aλ−1
min(ΣO)t

)
.

Again we can take t small so that t2 ≤ t. Simplifying further, we have

‖∆OS‖ ≤ (3
√

dOaλ−1
min(ΣO) + 1)

(√
2abσmax(M+

Ω)
[
κ(ΣO) + λ−1

min(ΣO)
]

+ aλ−1
min(ΣO)

)
t.

Finally, since the aλ−1
min(ΣO) is smaller than the left-hand term inside the parentheses, we

can write

‖∆OS‖ ≤ (3
√

dOaλ−1
min(ΣO) + 1)

(
2
√

2abσmax(M+
Ω)

[
κ(ΣO) + λ−1

min(ΣO)
])

t. (C.10)

Concentration bound. We need to bound t = ‖∆O‖, the error when estimating ΣO from

observations ψ(O)(1), . . . , ψ(O)(n) over n unlabeled data points.

To start, recall that O is the set of observable cliques, ψ(O) ∈ {0, 1}dO is the correspond-

ing vector of minimal statistics, and ΣO = Cov (ψ(O)). For notational convenience, let

R = E
[
ψ(O)ψ(O)T

]
, r = E

[
ψ(O)

]
, and rk = ψ(O)(k), and ∆r = 1

n

∑n
i=1 rk − r. Then we have:

||∆O|| =
∣∣∣∣∣∣ΣO − Σ̃O

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣(R − rrT ) −

1
n

n∑
i=1

rirT
i − (r + ∆r) (r + ∆r)T


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣R − 1

n

n∑
i=1

rirT
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣︸              ︷︷              ︸

∆R

+
∣∣∣∣∣∣rrT − (r + ∆r) (r + ∆r)T

∣∣∣∣∣∣︸                           ︷︷                           ︸
∆r

.

We start by applying the matrix Hoeffding inequality [Tropp, 2015] to bound the first term,

∆R. Let S k = 1
n (R − Rk), and thus clearly E [S k] = 0. We seek a sequence of symmetric

matrices Ak s.t. S 2
k � A2

k . First, note that, for some vectors x, v,

xT
(
||v||2 I − vvT

)
x = ||v||2 ||x||2 − 〈x, v〉2 ≥ 0
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using Cauchy-Schwarz; therefore ||v||2 I � vvT , so that

d2
OI � ||rk||

4 I � ||rk||
2 rkrT

k = (rkrT
k )2.

Next, note that (rkrT
k + R)2 � 0. Now, we use this to see that:

(nS k)2 = (rkrT
k − R)2 � (rkrT

k − R)2 + (rkrT
k + R)2 = 2((rkrT

k )2 + R2) � 2(d2
OI + R2).

Therefore, let A2
k = 2

n2 (d2
OI + R2), and note that

∣∣∣∣∣∣R2
∣∣∣∣∣∣ ≤ ||R||2 ≤ (dO ||R||max)2 = d2

O. We then

have

σ2 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

n∑
k=1

A2
k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ 2

n

(
d2

O +
∣∣∣∣∣∣R2

∣∣∣∣∣∣) ≤ 4d2
O

n
.

And thus,

p (||∆R|| ≥ γ) ≤ 2dO exp
(
−

nγ2

32d2
O

)
. (C.11)

Next, we bound ∆r. We see that:

||∆r|| =
∣∣∣∣∣∣rrT − (r + ∆r) (r + ∆r)T

∣∣∣∣∣∣
=

∣∣∣∣∣∣r∆T
r + ∆rrT + ∆r∆

T
r

∣∣∣∣∣∣
≤

∣∣∣∣∣∣r∆T
r

∣∣∣∣∣∣ +
∣∣∣∣∣∣∆rrT

∣∣∣∣∣∣ +
∣∣∣∣∣∣∆r∆

T
r

∣∣∣∣∣∣
≤ 2 ||r|| ||∆r|| + ||∆r||

2

≤ 3 ||r|| ||∆r||

≤ 3 ||r||1 ||∆r||1

≤ 3d2
O|∆

′
r|,

where ∆′r is the perturbation for a single element of ψ(O). We can then apply the standard
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Hoeffding’s bound to get:

p(||∆r|| ≥ γ) ≤ 2 exp
(
−

2nγ2

3d2
O

)
,

Combining the bounds for ||∆R|| and ||∆r||, we get:

p(‖∆O‖ ≥ γ) = p(t ≥ γ) ≤ 3dO exp
(
−

nγ2

32d2
O

)
. (C.12)

Final steps Now, we use the bound on t in (C.10) and the concentration bound above

to write

p(‖∆OS‖ ≥ t′) ≤ p(Vt ≥ t′)

= p
(
t ≥

t′

V

)
≤ 2dO exp

(
−

nt′2

32V2d2
O

)
,

where V = (3
√

dOaλ−1
min(ΣO) + 1)

(
2
√

2abσmax(M+
Ω

)
[
κ(ΣO) + 1

λmin(ΣO)

])
.

Given Σ̃OS, we recover θ̃1 = Σ̃OS + E
[
ψ(H)

]
Ê

[
ψ(O)

]
. We assume E

[
ψ(H)

]
is known,

and we can bound the error introduced by E
[
ψ(H)

]
Ê

[
ψ(O)

]
as above, which we see can

be folded into the looser bound for the error in Σ̃OS.

Finally, we expand the rank-one form θ̃1 into θ̃ algebraically, according to our weight

tying in the rank one model we use. Suppose in the rank one reduction, we let yB =

1 {y = y1}. Then each element of θ1 that we track corresponds to either the probability

of being correct, αC,y = pθ(∩i∈C{λi = y}, y = y) or the probability of being incorrect,
1

r−1 (1 − αC,y), for each labeling function clique C and label output combination yC, and

this value is simply copied r − 1 times (for the other, weight-tied incorrect values), except

for potentially one entry where it is multiplied by (r − 1) and then subtracted from 1 (to

transform from incorrect to correct). Therefore, ||∆θ|| =
∣∣∣∣∣∣θ − θ̃∣∣∣∣∣∣ ≤ 2(r − 1)

∣∣∣∣∣∣θ1 − θ̃1

∣∣∣∣∣∣. Thus,
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we have:

p(‖∆θ‖ ≥ t′) ≤ 4(r − 1)dO exp
(
−

nt′2

32V2d2
O

)
,

where V is defined as above. We only have one more step:

E
[∣∣∣∣∣∣θ̃ − θ∣∣∣∣∣∣] =

∫ ∞

0
p(‖θ̃ − θ‖ ≥ γ)dγ

≤

∫ ∞

0
4(r − 1)dO exp

(
−

n
32V2d2

O

γ2
)

dγ

=
4(r − 1)dO

√
π

2
√

n
32V2d2

O

= 4(r − 1)d2
O

√
32π

n
V.

Here, we used the fact that
∫ ∞

0
exp(−aγ2)dγ =

√
π

2
√

a . �
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E. K. Mallory, C. Zhang, C. Ré, and R. B. Altman. Large-scale extraction of gene interac-

tions from full-text literature using deepdive. Bioinformatics, 2015.

G. S. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learn-

ing with weakly labeled data. Journal of Machine Learning Research, 11:955–984,

2010.
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models with multi-task weak supervision. AAAI, 2019b.
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supervision models. arXiv preprint arXiv:1903.05844, 2019.

P. Verga, D. Belanger, E. Strubell, B. Roth, and A. McCallum. Multilingual relation ex-

traction using compositional universal schema. arXiv preprint arXiv:1511.06396, 2015.



BIBLIOGRAPHY 223

C.-H. Wei, Y. Peng, R. Leaman, D. A. P., C. J. Mattingly, J. Li, T. Wiegers, and Z. Lu.

Overview of the BioCreative V chemical disease relation (CDR) task. In BioCreative

Challenge Evaluation Workshop, 2015.

R. Weischedel, E. Hovy, M. Marcus, M. Palmer, R. Belvin, S. Pradhan, L. Ramshaw, and

N. Xue. Ontonotes: A large training corpus for enhanced processing. Handbook of

Natural Language Processing and Machine Translation. Springer, 2011.

D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic

Journal of IGPL, 18(5):620–634, 2010.

C. Wu, H. Zhao, H. Fang, and M. Deng. Graphical model selection with latent variables.

Electronic Journal of Statistics, 11:3485–3521, 2017.

S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré. Fonduer:
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