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T
his installment of Research for Practice features a 
curated selection from Alex Ratner and Chris Ré, 
who provide an overview of recent developments 
in Knowledge Base Construction (KBC). While 
knowledge bases have a long history dating to the 

expert systems of the 1970s, recent advances in machine 
learning have led to a knowledge base renaissance, 
with knowledge bases now powering major product 
functionality including Google Assistant, Amazon Alexa, 
Apple Siri, and Wolfram Alpha. Ratner and Ré’s selections 
highlight key considerations in the modern KBC process, 
from interfaces that extract knowledge from domain 
experts to algorithms and representations that transfer 
knowledge across tasks. Please enjoy! —Peter Bailis

More information is accessible today than at any other 
time in human history. From a software perspective, 
however, the vast majority of this data is unusable, as it is 
locked away in unstructured formats such as text, PDFs, 
web pages, images, and other hard-to-parse formats. The 
goal of KBC (knowledge base construction) is to extract 
structured information automatically from this “dark 
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data,” so that it can be used in downstream applications for 
search, question-answering, link prediction, visualization, 
modeling, and much more. Today, KBs (knowledge bases) 
are the central components of systems that help fight 
human trafficking,18 accelerate biomedical discovery,9 and, 
increasingly, power web-search and question-answering 
technologies.4

KBC is extremely challenging, however, as it involves 
dealing with highly complex input data and multiple 
connected subtasks such as parsing, extracting, cleaning, 
linking, and integration. Traditionally, even with machine 
learning, each of these subtasks would require arduous 
feature engineering (i.e., manually crafting attributes of the 
input data to feed into the system). For this reason, KBC has 
traditionally been a months- or years-long process that was 
approached only by academic groups (e.g., YAGO,8 DBPedia,7 
KnowItNow,2 DeepDive,19 etc.)  or large, well-funded teams 
in industry and government (e.g., Google’s Knowledge Vault, 
IBM Watson, Amazon’s Product Graphs, etc.). 

Today, however, there is a renewed sense of 
democratized progress in the area of KBC, thanks 
to powerful but easy-to-use deep-learning models 
that largely obviate the burdensome task of feature 
engineering. Instead, modern deep-learning models 
operate directly over raw input data such as text or images 
and get state-of-the-art performance on KBC sub-tasks 
such as parsing, tagging, classifying, and linking. Moreover, 
standard commodity architectures are often suitable for a 
wide range of domains and tasks such as the “hegemony”11 
of the bi-LSTM (bidirectional long short-term memory) 
for text, or the CNN (convolutional neural network) for 
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images. Open-source implementations can often be 
downloaded and run in several lines of code. 

For these emerging deep-learning-based approaches to 
make KBC faster and easier, though, certain critical design 
decisions need to be addressed—such as how to piece them 
together, how to collect training data for them efficiently, 
and how to represent their input and output data. This 
article highlights three papers that focus on these critical 
design points: (1) joint-learning approaches for pooling 
information and coordinating among subcomponents; (2) 
more efficient methods of weakly supervising the machine-
learning components of the system; and (3) new ways of 
representing both inputs and outputs of the KB. 

JOINT LEARNING: SHARING INFORMATION AND  
AVOIDING CASCADED ERRORS 
Mitchell, T. M., Cohen, W. W., Hruschka Jr., E. R., Talukdar, 
P. P., Betteridge, J., Carlson, A., Mishra, B. D., Gardner, 
M., Kisiel, B., Krishnamurthy, J., et al. 2015. Never-ending 
learning. In Proceedings of the Conference on Artificial 
Intelligence (AAAI), 2302-2310.

K
BC is particularly challenging because of the large 
number of related subtasks involved, each of 
which may use one or more ML (machine-learning) 
models. Performing these tasks in disconnected 
pipelines is suboptimal in at least two ways: it can 

lead to cascading errors (for example, an initial parsing 
error may throw off a downstream tagging or linking 
task); and it misses the opportunity to pool information 
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and training signals among related tasks (for example, 
subcomponents that extract similar types of relations can 
probably use similar representations of the input data). The 
high-level idea of what are often termed joint inference 
and multitask learning—which we collectively refer to as 
joint learning—is to learn multiple related models jointly, 
connecting them by logical relations of their output values 
and/or shared representations of their input values. 

NELL (Never-Ending Language Learner) is a classic 
example of the impact of joint learning on KBC at an 
impressive scale. NELL is a system that has been extracting 
various facts about the world (e.g., ServedWith(Tea, 
Biscuits)) from the Internet since 2010, amounting to a 
KB containing (in 2015) more than 80 million entries. The 
problem setting approached by NELL consists of more than 
2,500 distinct learning tasks, including categorizing noun 
phrases into specific categories, linking similar entities, 
and extracting relations between entities. Rather than 
learning all these tasks separately, NELL’s formulation 
includes known (or learned) coupling constraints between 
the different tasks, which Mitchell et al. cite as critical 
to training NELL. These include logical relations such 
as subset/superset (e.g., IsSandwhich(Hamburger) ⇒ 
IsFood(Hamburger)) and mutual-exclusion constraints, 
which connect the many disparate tasks during inference 
and learning. 

In other systems, the importance of connecting or 
coupling multiple tasks is echoed in slightly different 
contexts or formulations: for example, as a way to 
avoid cascading errors between different pipeline steps 
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such as extraction and integration (e.g., DeepDive19), 
or implemented by sharing weights or learned 
representations of the input data between tasks as in 
multitask learning.3,17 Either way, the decision about how 
to couple different subtasks is a critical one in any KBC 
system design. 

WEAK SUPERVISION: PROGRAMMING ML WITH  
TRAINING DATA 
Ratner, A. J., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., and 
Ré. C., 2017. Snorkel: rapid training data creation with weak 
supervision. In Proceedings of the Very Large Database 
(VLDB) Endowment 11(3), 269-282. 

I
n almost all KBC systems today, many or all of the 
critical tasks are performed by increasingly complex 
machine-learning models, such as deep-learning 
ones. While these models indeed obviate much of the 
feature-engineering burden that was a traditional 

bottleneck in the KBC development process, they also 
require large volumes of labeled training data from which 
to learn. Having humans label this training data by hand 
is an expensive task that can take months or years, and 
the resulting labeled data set is frustratingly static: if 
the schema of a KB changes, as it frequently does in real 
production settings, the training set must be thrown out 
and relabeled. For these reasons, many KBC systems 
today use some form of weak supervision:15 noisier, higher-
level supervision provided more efficiently by a domain 
expert.6,10 For example, a popular heuristic technique 
is distant supervision, where the entries of an existing 
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knowledge base are heuristically aligned with new input 
data to label it as training data.1,13,16 

Snorkel provides an end-to-end framework for weakly 
supervising machine-learning models by having domain 
experts write LFs (labeling functions), which are simply 
black-box functions that programmatically label training 
data, rather than labeling any training data by hand. 
These LFs subsume a wide range of weak supervision 
techniques and effectively give non-machine-learning 
experts a simple way to “program” ML models. Moreover, 
Snorkel automatically learns the accuracies of the LFs 
and reweights their outputs using statistical modeling 
techniques, effectively denoising the training data, which 
can then be used to supervise the KBC system. In this 
paper, the authors demonstrate that Snorkel improves 
over prior weak supervision approaches by enabling the 
easy use of many noisy sources. Snorkel and comes within 
several percentage points of performance using massive 
hand-labeled training sets, showing the efficacy of weak 
supervision for making high-performance KBC systems 
faster and easier to develop. 

EMBEDDINGS: REPRESENTATION AND INCORPORATION 
OF DISTRIBUTED KNOWLEDGE 
Riedel, S., Y ao, L., McCallum, A., and Marlin, B. M. 2013. 
Relation extraction with matrix factorization and universal 
schemas. In Proceedings of the Conference of the North 
American Chapter of the Association for Computational 
Linguistics–Human Language Technologies, 74–84.  
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F
inally, a critical decision in KBC is how to represent 
data: both the unstructured input data and the 
resulting output constituting the knowledge base. 
In both KBC and more general ML settings, the 
use of dense vector embeddings to represent 

input data, especially text, has become an omnipresent 
tool.12 For example, word embeddings, learned by applying 
PCA (principal component analysis) or some approximate 
variant to large unlabeled corpora, can inherently 
represent meaningful semantics of text data, such as 
synonymy, and serve as a powerful but simple way to 
incorporate statistical knowledge from large corpora. 
Increasingly sophisticated types of embeddings, such as 
hyperbolic,14 multimodal, and graph5 embeddings, can 
provide powerful boosts to end-system performance in an 
expanded range of settings. 

In their paper, Riedel et al. provide an interesting 
perspective by showing how embeddings can also be used 
to represent the knowledge base itself. In traditional KBC, 
an output schema (i.e., which types of relations are to be 
extracted) is selected first and fixed, which is necessarily a 
manual process. Instead, Riedel et al. propose using dense 
embeddings to represent the KB itself and learning these 
from the union of all available or potential target schemas. 

Moreover, they argue that such an approach unifies the 
traditionally separate tasks of extraction and integration. 
Generally, extraction is the process of going from input 
data to an entry in the KB—for example, mapping a text 
string X likes Y to a KB relation Likes(X,Y)—while 
integration is the task of merging or linking related entities 
and relations. In their approach, however, both input text 

7 of 12

A 
critical 
decision in 
KBC is how 
to represent 
data



acmqueue | may-june 2018  86

research for practiceRFP

and KB entries are represented in the same vector space, 
so these operations become essentially equivalent. These 
embeddings can then be learned jointly and queried for a 
variety of prediction tasks. 

KBC BECOMING MORE ACCESSIBLE
This article has reviewed approaches to three critical 
design points of building a modern KBC system and how 
they have the potential to accelerate the KBC process: (1) 
coupling multiple component models to learn them jointly; 
(2) using weak supervision to supervise these models more 
efficiently and flexibly; and (3) choosing a dense vector 
representation for the data. While ML-based KBC systems 
are still large and complex, one practical benefit of today’s 
interest and investment in ML is the plethora of state-of-
the-art models for various KBC subtasks available in the 
open source, and well-engineered frameworks such as 
PyTorch and TensorFlow with which to run them. Together 
with techniques and systems for putting all the pieces 
together like those reviewed, high-performance KBC is 
becoming more accessible than ever. 
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