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Data augmentation is the technique of enlarging training sets with — TFs —» Generator ,:
class-preserving transformations—a form of weak supervision. : : :
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Data augmentation is a critical tool for obtaining state-of-the-art
results, but usually based on heuristic procedures for tuning and O, Users write @We learn a sequence @Use for standard data

composing. Our goal is to do this automatically. transformation model adversarially to augmentation with any
functions (TFs) generate sequences of TFs end discriminative model
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@ Adversarial objective optimized by policy gradient descent: Jj; = E, ¢, Ezu {log(l — Df})(hm o...0h (g;)))] +E oy [log(Dg(a:’))}
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but will not map between . .
Many more transformations than just e.g. rotations and crops— "™ E.ﬂ..- classes. This allows us to train Learns TF sampling frequencies,  State-based model (LSTM)

Weakening the invariance assumption

Modeling sequence information

. samples independently of '
but complex transformations are more difficult to tune and with unlabeled data! ¢ | P lied T,:y Learns to ©OMpPOSEe Thsin
. . o hy () € {y(z),yp) previously appiied 1Fs. specific orders.
compose! New domains are tough to spin up, too. y(hry, o 71 Y\r)s Yo
Augmentation as sequence modeling Robustness to misspecification Performance on multi-domain datasets
" 3 - ; ‘ A major advantage of our approach is that we learn to avoid We improve performance on MNIST, CIFAR-10, text relation
- — 7 — ) misspecified transformation functions by the user. extraction (ACE), and mammography classification (DDSM).
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We represent data augmentation pipelines as sequences of does not need to be ACE (F1)  100| 627 59.9 628 | 629  64.2 : I LSTM  81.47 +0.46 |
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