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The Traditional ML Pipeline has a New Bottleneck Snorkel Users

Generating Noisy Labels with Labeling Functions
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In Snorkel, users write labeling functions (LFs), which are just scripts that noisily label
subsets of the data. Ex: Labeling relations in text based on an existing knowledge base:
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Snorkel Workshop: User Study

Now we use deep v

carning, out It's / 71% of first-time, non-expert users beat 7 hours of hand-
data hUﬂgI’y! labeling in 2hrs. with Snorkel, with 45.5% avg. improvement
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Snorkel + Data Programming: A Unifying Framework for Weak Supervision
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New time-accuracy tradeoff space for modeling weak supervision:

 When to model the source accuracies: We provide an optimizer with
theoretical guarantees that can speed up initial dev. cycles

 How much structure to model: Can speed up modeling by up to 10x!
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0 Users write labeling 9 We model the labeling 9 We use the estimated
functions to generate functions’ behavior to de- probabilistic labels to
noisy labels noise them train a model
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With tens of LFs, we improve on DS / heuristic baselines, and
come within points of expensive, hand-labeled datasets

Open-source code and tutorials: snorkel.stanford. edu




