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ABSTRACT
Supervisedmethods are commonly used formachine-learning
based applications but require expensive labeled dataset cre-
ation and maintenance. Increasingly, practitioners employ
weak supervision approaches, where training labels are pro-
grammatically generated in higher-level but noisier ways.
However, these approaches require domain experts with
programming skills. Additionally, highly imbalanced data is
often a significant practical challenge for these approaches.
In this work, we propose Osprey, a weak-supervision system
suited for highly-imbalanced data, built on top of the Snorkel
framework. In order to support non-coders, the program-
matic labeling is decoupled into a code layer and a config-
uration one. This decoupling enables a rapid development
of end-to-end systems by encoding the business logic into
the configuration layer. We apply the resulting system on
highly-imbalanced (0.05% positive) social-media data using a
synthetic data rebalancing and augmentation approach, and
a novel technique of ensembling a generative model over
the legacy rules with a learned discriminative model. We
demonstrate how an existing rule-based model can be trans-
formed easily into a weakly-supervised one. For 3 relation
extraction applications based on real-world deployments at
Intel, we show that with a fraction of the cost, we achieve
gains of 18.5 precision points and 28.5 coverage points over
prior traditionally supervised and rules-based approaches.
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weak supervision. machine learning democratization, end-
to-end systems, relation extraction
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1 INTRODUCTION
In recent years, modern machine learning (ML) models have
become increasingly powerful but also complex, achieving
new state-of-the-art results on a range of traditionally chal-
lenging tasks, but requiring massive hand-labeled training
sets to do so [19]. However, while some labeled data sets are
available for more generic or benchmark problems, this is
not the case for the domain-specific, dynamically-changing
problems of real-world users. For example, many labeled data
sets are publicly available for the generic task of sentiment
analysis—but none for extracting custom-defined ”business
partnership” relations from text feeds. In response, many
ML developers have increasingly turned to weak supervi-
sion methods, in which a larger volume of more cheaply-
generated, noisier training labels is used in lieu of a smaller
hand-labeled set. Especially given the increasing commoditi-
zation of standard ML model architectures, the supervision
strategy used is increasingly the key differentiator for end
model performance, and recently has been the key technique
in state-of-the-art results [6, 13]. Prior work in weak supervi-
sion has focused on the setting of independent crowd work-
ers [7, 9], custom-tailored and hand-tuned distant supervision
strategies in the natural language processing domain [14, 21],
knowledge-bases[12, 14], handling generic label noise or mis-
specification [3, 15]. Recent work has focused on building
end-to-end systems allowing non-experts to create and man-
age multiple sources of weak supervision that may have
diverse accuracies, coverages, and correlations [1, 18].
The Snorkel framework for weakly-supervised ML [17]

allows users to generically specify multiple sources of weak
supervision that vary in accuracy, coverage, and that may
be arbitrarily correlated. Snorkel’s pipeline follows three
main stages: first, users write labeling functions (LFs), which
are simply black-box functions that take in unlabeled data
points and output a label or abstain, and can be used to ex-
press a wide variety of weak supervision strategies; next,
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Figure 1: In the Osprey pipeline, rather than manually
or programmatically labeling training data, domain
experts configure the labeling templates through a
simple tabular interface (1) from which groups of
labeling-function variants are generated by the LF
Generator (2). This weak supervision is applied to a
synthetically-balanced dataset and automatically de-
noised by a generative model (3), producing labels for
training a discriminative model such as deep neural
network (4). The generative and discriminative mod-
els are ensembled into a final model (5)

a generative modeling approach is used to estimate the ac-
curacies and correlations of the different labeling functions
based on their observed agreements and disagreements; and
finally, these accuracies are used to re-weight and combine
the labels output by the labeling functions, producing a set
of probabilistic (confidence-weighted) training labels.
In this work, we propose Osprey, a weak-supervision

system, that builds on top of Snorkel framework [17] and
extends it to support an end-to-end industrial ML deploy-
ment in three major ways (Figure 1): (i) We aim to democ-
ratize it to include non-programmer domain expert users.
Instead of coding labeling functions, in Osprey domain ex-
perts inject business knowledge into the system through
a new layer of higher-level interfaces. Moreover, with this
new declarative layer we speed up the model development
and tuning process (ii) By applying a synthetic rebalanc-
ing and augmentation technique, Osprey can handle a high
class imbalance that is very common in practice. Such an
imbalance makes hand-labeling training data prohibitively
expensive and causes problems for existing weak supervision
approaches (iii) Osprey uses a novel ensembling technique,
wherein the generative model defined over the labeling func-
tions is ensembled with the downstream discriminative mod-
els being weakly supervised, in order to support a general-
ization while keeping a high precision level. In Figure 1 we
summarize the main additions to original Snorkel pipeline
with orange highlighting.

We validate it on 3 real-world applications at Intel, where
our ensembling technique yields improvements of over 10
precision points on an ablation, and thewhole system achieves
gains of 18.5 precision points and 28.5 coverage points over

Figure 2: A tweet from a customer regarding a new
partnership All underlined words are entities repre-
senting the same customer. Some of them are explicit
Twitter handles, and others are anaphoric pronouns.

prior traditionally supervised and rules-based approaches.
Furthermore, our approach is intended to be generic, and
thus applicable to a range of other settings and domains.

In Section 2 we start by outlining a specific case-study in-
volving relation-extraction over Twitter data, motivated by a
deployment of Intel’s Sales & Marketing Group (SMG). In or-
der to motivate the weak supervision approach of Osprey, in
Section 3 we provide a high-level analysis of the cost of these
prior approaches, compared to weak supervision, using our
experiences at Intel SMG. We then describe how we provide
higher-level, more declarative weak supervision interfaces
to non-programmer domain experts in 4. Next, in Section 5
we show how highly-imbalanced problems can be supported
with intermediate datasets. We describe our approach to im-
proving precision through a novel generative-discriminative
model ensembling strategy in 6. We then present experimen-
tal details and results in Sections 7, 8 and conclude with a
short review of related work in Section 9.

2 SALES & MARKETING - A CASE-STUDY
Intel’s Sales & Marketing Group (SMG) is responsible for the
company’s interaction with its many customers. In order to
optimize this interaction, SMG account managers need to
be familiar with customers covered by them at all times. We
study an application for monitoring Twitter in order to find
publicly available business-related items about customers.

The high volume of tweets involving customers (millions
per month) requires an automated process for their classi-
fication into one of several ”business scenarios” defined by
SMG domain experts. This modeling schema include classes
such as ”Partnership”, ”Merger & Acquisition” (M&A), ”Prod-
uct Launch”, etc., but the number of business scenarios and
their definitions evolve and change over time. This business-
driven task faces the above mentioned challenges, which are
common across many real-world problems and domains:

• Extreme Class imbalance:Apreliminary analysis showed
that the ratio of customer-related tweets relevant to
any of the business-scenarios is 0.05% on average.

• Prohibitive Labeling Cost:With a positive ratio of 0.05%,
directly developing a large-enough labeled training
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set for any business scenario would be expensive, take
manyweeks/months, and require a full relabeling given
any change to the schema.

The characteristics of Twitter as a medium and the busi-
ness problem in general raise some additional points which
are again instances of common themes present in many real-
world settings involving complex, high-dimensional data:

• Semantic Diversity: Tweets come in many genres. Their
content may consist of a formal/informal language,
their syntax is often broken and they mix words, hash-
tags, emojis etc. Therefore, simple rules or pretrained
models are rarely sufficient for a given business sce-
nario, hence custom-trained ML models are required.

• Data Drift: Social-media language evolves rapidly over
time. Hence labeled training sets require regular main-
tenance or complete replacement.

• Precision-Oriented Workflow: Account-managers prefer
seeing fewer false positives, and receiving only the
high-confidence relevant data items, especially since
important events tend to resurface frequently.

The task of mapping customers to business-scenarios par-
ticipation can be solved by determining for each customer-
mention in a tweet, whether it participates one or more
business-scenarios. Many times, in Twitter, explicit details
are missing, for example, a tweet may describe a partnership
between a customer and an unspecified company. There-
fore, every business-scenario forms an independent unary
relation-extraction problem rather than a binary one. In this
paper we describe three approaches that represent standard
approaches taken to the aforementioned problem, and to
many other similar real-world ones: a rule-based approach,
a weakly-supervised one, and a fully-supervised one, where
we hold the choice of particular ML model constant between
the latter two. We show that a very long and expensive
tuning process is required for both the rule-based and the
fully-supervised methods, and that the rule-based inference
cannot be scaled easily.We then present Osprey, our weak su-
pervision system for supporting non-coder domain experts,
using intermediate synthetic datasets to assist in handling
highly-imbalanced data, and using a novel weak supervision
ensembling approach to improve precision.

3 REDUCING THE COST
In order to motivate the non-coder weak supervision ap-
proach taken by Osprey, we start by analyzing the costs
for each of the three methods mentioned above, in terms of
money and time, using our real-world industrial case study
at Intel. We start by reviewing the high-level components
of the different approaches, and in particular where they
overlap and diverge. When analyzing the time cost, we focus
on the human-driven component (e.g. expert’s time spent on

tuning rules) rather than on the machine-driven component
(e.g. wall time for running training/inference). In our setting
we found that the latter was negligible compared with the
former. Moreover, it was was approximately constant across
the weakly/fully supervised methods where model class and
training procedure were fixed. The relation-extraction pro-
cess is comprised of two steps - (i) recognizing customer
entities; and (ii) verifying for each one whether it partic-
ipates in a given relation type. For comparability, we use
the same entity-recognition logic in all three methods. The
entities of a tweet are all the Twitter handles (e.g. ”@XYZ”)
and anaphoric pronouns within it, pointing to a customer
(Figure 2). We leave other entity types for future work.

Next we describe each of the there methods at a high
level for the purposes of the costs analysis. Additional details
regarding each method will be given in the next sections.

3.1 Costs of a Legacy Rule-Based System
As the unary relations representing SMG’s business-scenarios
are not supported by public labeled datasets, SMG originally
decided to develop a rule-based method. Directly compiling
a labeled dataset for each business-scenario was ruled out as
too expensive given the positive-class ratio of 0.05%.
The relational part of the model consists of several rule-

groups for each business-scenario (Figure 3). A single rule is
comprised of a basic pattern a.k.a ”anchor” that is matched
against each tweet. Once a basic match was found, it gets the
anchor’s predefined score. Additional supporting / opposing
patterns may be configured to raise / lower the match score.
Following Figure 3 example, tweets containing ”partnering”
get a score of 0.8. If a ”supporter” such as ”excited” appears up
to 4 words before the anchor, the score will be raised to 1.0. If
the tweet also contains an ”opposer” such as ”years ago”, the
score will be reduced to 0.5. A relation will be emitted if the
rule’s final score≥0.8 and the sum of group’s final scores≥1.0.

Overall, developing such a rule-basedmodel involves three
logical tasks: (i) finding enough positive and negative pat-
terns; (ii) fine-tuning each pattern’s weights, scores and
thresholds; and (iii) adjusting the cross-pattern dependen-
cies e.g. some positive patterns may provide weak signals
separately but together when located close enough in text
could be indicative enough.
In order to analyze the performance of this rule-based

model, on amonthly-basis, all the relations predicted over the
last month’s tweets were sent to three Amazon Mechanical
Turk (AMT) workers for validation (Figure 4). SMG domain
experts then reviewed the relations that were unanimously
approved or rejected by the AMT workers in order to curate
and refine the model for the next month. During this iterative
process, that took place for six month, SMG had to develop
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Figure 3: Legacy rules for the ”Partnership” business
scenario. All these thresholds and weights needed to
be manually tuned and maintained.

an unsupervised mechanism for identifying rogue or low-
quality AMT workers, whose outputs had a huge impact
on the final accuracy. The model which detected abnormal
workers was based on features such as the worker’s label
distribution, number of labels in the minority, speed, etc.
After six months of improving both the rule-based and

the AMT management models, SMG’s domain experts exam-
ined the latest results and found that the rule-based model
provided relations with an average precision of 0.5. When
combined with the AMT validation step, the average preci-
sion level was 0.85, so this was adopted as the full pipeline.
With this pipeline, however, besides the money spent on a
regular basis on AMT work, the process had to be applied in
batches of at least 10 days in order to accumulate enough data
statistics for the AMT worker validation system to function
- a latency that lowered the business value of the resulting
outputs. Furthermore, given shifting data and business tar-
gets that in our use-case require a retraining and hence a
tuning process every few months, and with the brittle nature
of this approach, this system proved difficult to maintain.

3.2 Costs of a Fully-Supervised System
Using a supervised ML model to achieve higher precision
and recall on a task like relation extraction is a common and
effective solution in practice today. The key ingredient in a
standard, ”fully-supervised” approach is a labeled training
set, which for modern representation learning models must

Figure 4: The iterative tuning process of the rule-
based model and its costs. Rules-model and the AMT-
management one are managed by the domain expert.

generally be quite large. In a highly class-imbalanced use case
like ours, labeling and re-labeling such a dataset from scratch
would have a huge cost. Therefore, instead, we effectively
relied on the above mentioned rule-based pipeline to provide
a high-recall preprocessing filter s.t. only data-items passing
this filter were hand-labeled by AMT/experts (more details in
Section 7). Hence, the traditional supervised approach in our
class-imbalanced setting has a similar profile to that of the
rule-based approach, given that the cost of training a model
is negligible compared to that of creating the labeled training
set through this process. In this Section, we continue our
analysis of the high-level costs. We provide further details
about the setup of the fully-supervised system in Section 7.

3.3 Costs of a Weakly-Supervised System
As mentioned in Sections 3.1, 3.2, developing a high-recall
rule-based model is a crucial step for both the rule-based sys-
tem (pre-AMT inference) and the fully-supervised one (pre-
filter for manual labeling). In Osprey, however, the model’s
recall does not depend directly on the number of config-
ured patterns but instead on the generalization power of
Snorkel’s discriminative model (step 4 in Figure 1), hence
the time spent in Osprey on finding patterns (task i. of rules
model development, Section 3.1) is much shorter. Moreover,
by using Snorkel’s unsupervised generative model to auto-
matically estimate the accuracies of the labeling functions
(LFs) [1, 17, 18], we find that we can skip the highly expen-
sive fine-tuning done by expert (task ii.). Also, in Osprey
instead of tuning the cross-pattern dependencies (task iii.),
the system dynamically generates combinations of LFs (Sec-
tion 4.1), while relying again on the generative model to
automatically find their weights and accuracies. Finally, as
the generative model of Snorkel provides highly-accurate
labels (Table 5), there is no need to use AMT for validation,
nor there is a need to develop or maintain an unsupervised
AMT management model.

Another significant advantage of a weakly-supervised ap-
proach is that upon a data change necessitating a model
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Table 1: Costs of different high level stages, in terms of
human-time and money for rule-based ("RB"), weak-
supervision ("WS") and full-supervision ("FS"). Com-
pute time is not included, as was negligible in compar-
ison. Bold items indicate an extremely large cost.

Labeling &
Tuning

Ongoing
Validation

Train &
Inference

Time $ Time $ Time

RB AMT,
Expert AMT

Batch
latency AMT

WS Expert

FS AMT,
Expert AMT

refresh (e.g. a language shift), a simple model re-training can
be executed over a new unlabeled training set, with only few
LFs generally needing to be amended before the retraining.

In the basic setup of Snorkel [17], LFs are usually described
as being developed from scratch, on demand, by a domain ex-
pert. This generally mirrors other prior programmatic weak
supervision pipelines. In this work however, we decouple the
code layer from the configuration layer in order to support
non-coder domain experts and democratize ML as well as
to further reduce the experts workload in order to speed up
end-to-end system development. Moreover, with Osprey’s
code-configuration decoupling, if a legacy rule-based model
exists, it could be transformed automatically into a set of
much ”relaxed” LFs that are based solely on the patterns
without any thresholds, weights, etc. (see Section 4.2) and
the patterns development step (task i. Section 3.1) could be
avoided. In real deployment, we find that such an automatic
transformation is a good practice that can save significant
time, and may additionally support useful backwards com-
patibility, e.g. Osprey can ingest the legacy rule-based model.

Table 1 summarizes the different costs within each system.

3.4 Costs Validation - a Human Study
In order to validate the above qualitative analysis, we have
conducted a human study on four relation-extraction tasks.
The domain experts in this study were three Intel product
analysts that share the same business-group with the data
scientists who developed Osprey. The study shows that on
average, an Osprey model that outperforms both the legacy
rule-based system and an equivalent supervised system can
be developed by a domain expert in 1-2 weeks, where the
iterative tuning step of these alternatives alone takes few
months as described above. Moreover, a change to business
definition requires an additional tuning of 2-3 weeks for the
rule-based and fully-supervised approaches. In conclusion,
from costs perspectives, a weak-supervision system offers
significant practical advantages.

4 IMPROVED NON-CODERS SUPPORT
4.1 Decoupling Code and Configuration
In Snorkel, instead of manually labeling a large training
set, domain experts compose relatively few code-snippets
a.k.a labeling functions (LFs) capable of noisily labeling an
unlabeled training set. Generally, given a data item, an LF
returns a positive answer, a negative one or it abstains, but in
this work all LFs are either positive ones (positive/abstain),
or negative ones (negative/abstain).
Domain experts have a deep understanding of the busi-

ness needs driving the ML application of interest. However,
although being capable of creating simple LFs, they often
struggle with composing complex LFs that require better
programming skills. In this section we describe a higher-
level interface provided by Osprey for non-programmers
to specify weak supervision in our setting. This interface
tackles this important practical gap by decoupling the do-
main understanding from the required coding skills. We also
provide in this section more details on how this interface
speeds up the end-to-end system development as mentioned
above (Section 3.3) by avoiding AMT-validation, weights ad-
justment (task ii. in Section 3.1), and dependencies tuning
(task iii. in Section 3.1).

Suppose a domain expert knows that ”partners” is a pos-
itive term and "(years|months) ago" a negative regular ex-
pression pattern. In Osprey, rather than encoding this pro-
grammatically as in Snorkel, domain experts just enter these
keywords or regular expressions in, along with the ”polarity”
information (pos/neg), into an Excel-spreadsheet based inter-
face, and then Osprey auto-generates LFs. In more complex
cases where in the rule-based system the user would had to
manually specify and tune numeric thresholds—for example
to express that ”memorandum of understanding” within k
words (for some k) of ”partners” is a 2 times stronger positive
indication — Osprey compiles a ”dynamic combination” of
LFs: a positive LF for ”partners”, a second positive LF for
”memorandum of understanding” and few variants of posi-
tive LFs looking for both terms within m words for different
values of m. In Osprey, domain experts are not required to
tune weights, thresholds and scores of LFs since the genera-
tive model in Snorkel is capable of filtering out the noise by
learning the accuracies of LFs, and re-weighting them appro-
priately [1, 17, 18]. Cross-pattern dependencies tuning is also
avoided in Osprey by applying Snorkel’s generative model
on the dynamically created LF combinations. We find that
Osprey’s light and code-less configuration greatly reduces
the time and complexity to configure and deploy an end-to-
end system, as compared to the rules-based, fully-supervised
and even the Snorkel baselines.

The LFs compilation process is supported in Osprey by a
generic code layer of ”LF templates” that is first developed
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Figure 5: Osprey’s Excel-like representation of the
original ”Partnership” rule (Figure 3). Unlike the
rule-based system, Osprey’s configuration requires no
heavy tuning of thresholds, etc. Osprey’s LF Generator
uses a pattern template, which can be configured ini-
tially by a developer, to compile multiple LFs and pos-
sibly their dynamic combinations. Each LF is either
positive or negative according to its polarity value.

by a developer, guided at a high-level according to business
needs. Each template is an almost ready-to-use LF with some
placeholders to be filled with user inputs.

A newly added ”LF Generator” component reads multiple
template configurations provided by the domain expert, in-
jects the configured user-inputs (patterns in this case) into
the appropriate code-logic previously developed (templates),
and generates the final LF code on-the-fly (Figure 6).

Figure 6: A domain expert configures the pattern-
based and the broad-coverage LF templates through
an Excel-like configuration. For backward compat-
ibility with the legacy system, experts can config-
ure the rule-based model and transform it automat-
ically into Osprey’s pattern-based configuration (yel-
low path, top-left). The LF Generator reads in all the
configurations and compiles the final LFs by injecting
the user inputs into the pre-coded templates logic.

While the resulting Excel spreadsheet-based interface is
not ”push-button”, our main point is that it (i) enables non-
programmers to quickly inject information, and (ii) decou-
ples them from ML developers. In our experience at Intel,
this has a fundamental impact on the way that ML systems
are developed and deployed.
For backward-compatibility purposes, an existing rule-

based model could be transformed into Osprey’s simpler

Excel-like configuration through an automated relaxation
process where thresholds etc. are removed from the model.

4.2 Benefits of Decoupling
In the example above, the domain expert can add patterns
to existing templates such as the pattern-template without
any programming needed, and the LF Generator creates
LFs for separate patterns and their combinations. With the
code-configuration decoupling a developer can extend the LF
Generator logic without having a deep domain knowledge,
for example, to create from every entry in the pattern-LF
configuration table two LF-variants – a first LF for a single
appearance of this pattern, a second one for 2 or more ap-
pearances. This newly added logic, takes the choice of free
parameters in the LFs—that otherwise, e.g. in the rule-based
setting or basic Snorkel, a user would have tomanually tune—
and discretizes it, so that Snorkel’s generative model can
automatically handle the tuning. Note that directly tuning
continuous parameters without discretization is an inter-
esting direction for future work. However, this discretized
approach seems to work well, and captures the intuition for
example that the exact number of times that ”partnership”
appears does not matter much, but whether it appears once
or many times might. Once this logic is added to the LF Gen-
erator code, the domain expert will get additional LFs ”for
free” without having to define new inputs for them. In this
way, the domain experts, developers, and ML experts can all
be cleanly decoupled within an organizational workflow.

Moreover, by decoupling interface layers in this way, domain-
specific logic can easily be injected. For example, in our
multiple relations problem, we can easily encode a rough
prior that only one relation type will be present per tweet
directly into the LF Generator - in other words, expressing a
simple logical mutual exclusion constraint between LFs of
different business-scenarios. Then, when building the LFs
for a business-scenario R, the LF Generator not only forms
positive-voting LFs from R’s anchors, but also negative LFs
from anchors of all business-scenarios R —again, all without
additional input from the domain expert.

4.3 Broad Coverage LFs
In addition to pattern-based LFs, which are generally high-
precision but low coverage, our system can also accept LFs
that are high-coverage but lower precision, given the ability
of Snorkel’s generative model to re-weight these LFs accord-
ingly [18]. Thus, the LF Generator in Osprey ingests another
family of configurable templates that represent statistical
features behaving differently in positive and negative sam-
ples. Many of these LFs, are also in line with the domain
expert’s rough intuition of how a general business tweet
should look, and indeed they were added to Osprey upon
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Figure 7: Osprey’s configuration of some broad cov-
erage LFs such as sentiment, ratio of lowercase/up-
percase characters, and number of emojis. Matching
LFs will be generated for all business-scenarios, as op-
posed to pattern-based LFs that are scenario-specific.
Each template type (e.g. Sentiment) is backed by a pre-
coded template logic loaded by the LF Generator.

the domain experts request. For example (Figure 7), a domain
expert could express in LF that personal tweets will consist
of more emojis than business tweets.
The exact statistical-characteristics behind these broad

coverage LFs slightly change from one business-scenario
to another. For example, ”Partnership” tweets tend to be
more formal and contain less emojis than ”Conference At-
tendance” ones. However, by default, all scenarios share the
same broad coverage LF templates and we rely on the the
mostly-negative data and the generative model of Snorkel
to handle these minor differences.

5 SYNTHETIC DATASETS
On preliminary experiments, we found out that even with
the same LF generation technique (a core part of Osprey’s
contribution), ”Vanilla” Snorkel fails to exceed an F1 score
of 0.1 when trained over a dataset representing the natural
distribution of data points coming directly from Twitter, due
to its highly imbalanced nature (0.05%). An equivalent fully-
supervised approach has failed to exceed this low score as
well. In response, we propose a rebalancing approach that
utilizes the logical structure of our multiple relation-classes
problem to generate balanced synthetic datasets.
Many times in highly-imbalanced cases, a sub-sampling

is used in order to place extra or less weight on different
parts of the population. As our problem involves both highly-
imbalanced data and multiple relation-classes, we take this
approach one step further. For each business-scenario R, in
order to differentiate better between items of R, items of other
business-scenarios R and ”general population”, we construct
three synthetic datasets: Train, Dev, and Pre-Test (Tables 2, 3).
Each dataset is a mixture of the following logical groups: (i)
General population candidates (ii) Approximately positive
candidates from R; (iii) Approximately negative candidates
from R; (iv) Approximately positives of R that form approxi-
mately negative candidates for R as the positive class ratio
of every scenario is very low and business-scenarios do not

Table 2: Characteristics of each dataset. FS=full-
supervision, WS=weak-supervision, RB=rule-based.

Dev Pre-Test Train Test
Distribution synthetic synthetic synthetic natural
Is Labeled? partially partially no no
WS-Usage tuning 1st test train 2nd test
FS-Usage train 1st test N/A 2nd test
RB-Usage tuning N/A N/A test

Table 3: Number ofmanually labeled items vs. number
of candidates in each dataset

Business
Scenario Labeled Dev Pre-Test Train Test

Partnership 1176 23K 15K 80K 390K
Prod. Launch 1182 20K 13.5K 85K 390K
M&A 498 11K 7K 85K 390K

tend to collide;. While “approximately positive” items for
Dev, Pre-test are simply the relations validated by expert and
found as positive (Figure 3), in the context of Train, approx.
positives are relations filtered by the pattern-based LFs.
Surprisingly, even though a high class imbalance and a

multi-class setting are each harder than a balanced binary
case, sometimes, there are advantages in their combination
especially if class-independence holds. We believe this ap-
proach can potentially generalize to other categorical set-
tings especially in weak-supervision systems.

6 BETTER PRECISIONWITH ENSEMBLES
In order to get high recall by generalizing to new data items
while ensuring a high-level of precision, we examine several
alternatives for the final weak supervision prediction model
used in Osprey at test time: (i) Snorkel’s discriminativemodel
that is trained over the generative model’s predictions. (ii) A
bagging-like ensemble of discriminative models trained with
different random seeds that control the items sampled for the
training set. (iii) An ensemble in which the high-precision
generative model—which is a model defined over the gener-
ally high-precision LFs—effectively provides a “safety-net”
for the generalizing discriminative model, similar to how the
high-precision AMT-workers provide a safety-net to rule-
based model. We have tried various ensembling techniques
for combining the generative and discriminative models, and
eventually found that a simple approach that requires no
heavy hyper-parameters tuning yielded the best results. In
this approach, the ensembled prediction equals the discrimi-
native prediction when the generative-prediction>0.5 or else
the ensembled marginal is zeroed out.

Though ensembling is commonly used in many machine-
learning systems, a generative-discriminative ensemble like
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ours is very rare. Moreover, to our knowledge such an ensem-
ble between a generative model and a discriminative model
that was trained over it (thus already ”captures its essense”)
is novel. In Section 7 we report gains of over 10 points in
precision on an ablation for this generative-discriminative
ensemble. We also report, that for a fixed precision-level,
such an ensemble will generate gains of over 30 points in
coverage over the discriminative model.

7 EXPERIMENTS SETUP
ExaminedMethods. We conducted a controlled experiment

involving two systems: a weak-supervision one as described
above (Figure 1), and an equivalent full-supervision version.
The method we picked for the discriminative part of the two
pipelines is a Bidirectional LSTM with an attention model,
which is commonly used for text-related ML problems, and
provides results close to the state of art (for example [22]).

The fully-supervised version was trained over Dev. Other
less appealing alternative for a training set is the original
labels validated in the rule-based tuning (right side of Figure
4), but this dataset is far too small (See Table 3) and our
full-supervision system cannot train well over it (Figure 8).
Another alternative is the much larger set of non-validated
unanimous AMT answers (i.e. 0

3 and
3
3 ) but is much noisier.

For comparability, the pattern-LFs of Osprey are based on
the legacy rule-based patterns without any tuning. We also
report the performance of the rule-based + AMT method,
that is not scalable nor feasible, but still provides some notion
of a human-driven base-line.

Raw Data and Candidates. For this work we used public
tweets written in English, from 2017-2018, involving Intel
customers. While these datasets cannot be shared due to
business limitations, we plan to share a synthetic dataset as
a follow-up work. As explained in Section 3, the relation-
extraction (RE) process involves a preceding step of entities
recognition shared between all methods. Hence, the reported
results reflect only differences related to the ”pure” RE logic.

Measurements. The highly-imbalanced data (0.05%) pre-
vents the creation of a traditional labeled test set. For ex-
ample, a test set of 500 positive items may require hand-
labeling 1M items. Instead, for any method, we manually
validated all the relations predicted over Test with predicted-
probability>0.5. Overall, out of the 390K items in Test, 5-10K
relations were validated for any single business-scenario.
After this manual validation, a method’s precision can be
easily estimated for any threshold>0.5. since both the true-
positives (TP) and the false-positives (FP) are known. How-
ever, without all labels of Test, we cannot directly measure
the recall since number of false negatives is unknown. In-
stead, we compare methods according to:

• Relative-recall of method x w.r.t baseline b - |T Px∩T Pb |
|T Pb | .

• Relative-coverage of method x w.r.t to method y - |T Px |
|T Py |

(similar to the relative-recall definition of [16])

8 RESULTS
Full-Supervision vs. Weak-Supervision. Table 4 describes

the best results found forweak-supervision and full-supervision
over 3 business scenarios.We can see that theweak-supervision
system outperforms the full-supervision one in ”Partner-
ship”, they are comparable over ”Product Launch” and the
weak-supervisionwins by a knockout in the smaller business-
scenario of ”Merger &Acquisition”. Moreover, in 2/3 business
scenarios, the weak-supervision system is equivalent to or
supersedes the legacy rule-based system which is backed by
human (AMT) validation. In Figure 8 we can see that on the
slightly-less imbalanced business-scenario of ”Partnership”
for which Dev is larger, full-supervision’s performance is
improved as more labeled samples are being used, but that
requires again either manual labeling or rules-tuning.

Intermediate Results. Table 5 shows that the precision pro-
vided by the generative model overDev is high and there was
no over-relaxation of the deeply tuned legacy rules when
transformed into the simple threshold-free model of Osprey.

Table 6 reports the performance of previously mentioned
(Section 6) alternatives for Osprey’s final-model on Test.
When fixing the number of TPs of every alternative to the
baseline’s, the precision levels of all weak-supervision mod-
els are lower than the baseline’s. The bagging version of the
discriminativemodel is more precise than the single-seed ver-
sion, and the generative final model reaches a slightly higher
precision level. However, when fixing the target precision-
level to the value provided by the legacy system, the bagging
version provides a much better relative recall and cover-
age than all other weak-supervision alternatives. Overall
the results of every discriminative model are better when
combined with the generative one.

9 FURTHER RELATEDWORK
While Osprey is generic and could be applied to many do-
mains, in this work it was validated through a relation-
extraction problem over a highly imbalanced textual medium.
Twitter data is widely used in research papers, but unlike
our work, they tend to focus on fully-supervised approaches,
text-level classification, and relatively balanced classes. For
instance, a classification model for cyber-hate and inappro-
priate language over Twitter was built by [4], where 2K
tweets were manually labeled for training and testing. [8]
presented an algorithm for separating hate-speech from stan-
dard conversation and non-hate but offensive. This model too
relies on a manually labeled corpus of 25K tweets, that are
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Table 4: Performance of the weakly-supervised approach (with gen. model ensembling + bagging), vs. the high-
cost fully-supervised equivalent, and the even higher-cost thus unfeasible rule-based baseline (”RB +AMT”). Mea-
surements taken over Test after fixing either the number of TPs or the precision-level to the baseline’s value. The
Relative-Recall values indicate correlation with baseline’s TPs and not the ”absolute” recall. (*) = closest point to
baseline’s fixed value from which results are taken since only relations with marginal>0.5 were manually vali-
dated on Test. Bold = best results found with a supervised method in each business-scenario.

Business True Positive Fixed Precision Level Fixed
Scenario Method TP Precision Relative Recall Precision TP Relative Coverage Relative Recall

Partnership
RB + AMT (baseline) 415 0.838 1 0.838 415 1 1
Weakly-Supervised 415 0.814 0.687 0.838 394 0.949 0.677
Fully-Supervised 415 0.635 0.682 0.838 148 0.355 0.319

Product
Launch

RB + AMT (baseline) 200 0.473 1 0.473 200 1 1
Weakly-Supervised 200 0.557 0.610 0.473 336 1.680 0.770
Fully-Supervised 200 0.606 0.567 0.473 375 1.873 0.748

Merger &
Acquisition

RB + AMT (baseline) 140 0.933 1 0.933 140 1 1
Weakly-Supervised 140 0.749 0.672 0.924∗ 85 0.607 0.491
Fully-Supervised 103∗ 0.325 0.553 0.933 5 0.036 0.038

Table 5: Performance of the generativemodel overDev

Business Scenario Precision Recall
Partnership 0.881 0.766
Product Launch 0.894 0.686
Merger & Acquisition 0.855 0.718

Figure 8: Performance of systems on ”Partnership”
when using subsets of Dev and fixing TPs number
to legacy’s one. FS=full-supervision, RB=rule-based,
DB=weak-supervision’s discriminative+bagging,
DBG=DB+generative ensemble

somewhat imbalanced, with 5% hate-speech. [2] has taken a
semi-supervised approach for relations-extraction using a
bootstrapping method. The method was validated for 4 differ-
ent relations over news documents. [10] extracts medicinal
cause-effect relations from Twitter data, using syntactic de-
pendencies between words. Twitter data is very often used

for text-level sentiment-analysis (a special case of text classifi-
cation) e.g. in [5] and [20] - both classify text-level sentiment
rather than connect it to a specific target which is closer to
RE. Weak supervision is also used for sentiment-analysis -
[11] is using a deep-learning approach for binary sentiment
classification of amazon reviews (well balanced datasets).
[12] uses weak-supervision for RE, over news data with the
novelty of capturing overlaps between relations. We cover
general weak supervision related work in Section 1.

10 CONCLUSIONS
In the currentworkwe have shown that highly class-imbalanced
supervision problems can be addressed quickly, with low cost,
and without domain experts needing programming skills,
through a weakly-supervised system we propose, Osprey.
In the setting we examine, rule-based systems and fully-
supervised systems on the other hand are expensive, time-
consuming and do not scale well. We have also provided a
mechanism for an easy configuration of theweak-supervision
model by decoupling the code-layer from the configuration-
one and by doing so, we have not only added support for non-
programmer domain-experts but reduced again the overall
domain expert workload. We have seen that the performance
of Osprey is much higher than the legacy rules-based and
fully-supervised system in 2 out of 3 real-life business scenar-
ios (and equivalent on the third one), both of which involved
expensive and time-consuming expert validation. We believe
that the new paradigm for non-programmer interaction with
ML pipelines, encompassed by our system, can be applied
to a range of rapidly-evolving, real-world applications both
over twitter or text data and beyond.
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Table 6: Ablation of different weakly-supervised (WS) pipeline variants as measured for ”Partnership” on Test
compared with the legacy rule-based baseline that involves AMT-validation. The results are reported after fix-
ing either the number of TPs or the precision to the baseline’s value. Bold = best results found by any weakly-
supervised variant. Other business-scenarios behave similarly.

True Positive Fixed Precision Level Fixed
Method TP Precision Relative Recall Precision TP Relative Coverage Relative Recall

Rule-Based + AMT (baseline) 415 0.838 1 0.838 415 1 1

WS Gen. 415 0.795 0.673 0.838 24 0.058 0.054
WS Disc. Single-Seed (AVG) 415 0.592 0.647 0.838 72 0.172 0.152
WS Disc. Bagging 415 0.747 0.663 0.838 257 0.618 0.483

WS Disc. Single-Seed (AVG) + Gen. 415 0.699 0.672 0.838 355 0.855 0.632
WS Disc. Bagging + Gen. 415 0.814 0.687 0.838 394 0.949 0.677
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