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longer need to do manual feature engineering! f
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in real-world applications! The current way of hand- %j
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weak supervision signals to the accuracies of the LFs, and are able to with respect to the predictions of the
programmatically label training data. denoise the training set they generate. generative model.

Generating Training Data Programmatically

Theorem: Scaling with Unlabeled Data Experimental Results: Information Extraction from Text

Creating Noisy Training Sets with Labeling Functions

In data programming, users write labeling functions (LFs), which
are just scripts that noisily label subsets of the data. An example
where we label relations in text based on an existing
knowledgebase:

"|Gene A|is found to

def 1f1(x): cause|symptom B./.”

cid = (x.gene, x.pheno)

if cid in KB: ‘|Gene A||s unrelated
return to symptom B

else:

return
Existing KB Contains @@

A Unifying Framework " Dependencies Between LFs
for Weak Supervision '
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We can also include dependencies

Crowdsourcing Domain Expert Heuristics between the LFs!

Given a constant-order number of LFs, we get the same
asymptotic scaling as in supervised methods—but with
respect to unlabeled data!

Theorem: Independent Case*

f r can be represented by our model family
It Our noise-aware risk minimizer has bounded gen. risk
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We have a sufficient number of LFs with enough coverage &
accuracy
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Then: 0(e~2) unlabeled training points allow the algorithm to
achieve 0 (€) generalization risk (using SGD + Gibbs sampling)

*For full theorem statement, more general form, and corresponding theorem for the case
when LF dependencies are included, see paper

We are implementing an easy-to-use information
extraction framework, Snorkel, using data

snorkel Programming (snorkel.stanford.edu)

We test data programming (DP) on text information extraction
problems, comparing to a distant supervision approach where rules to
create training data were encoded as a simple if-then-return (ITR) script
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We get significant improvements across a range of applications and
LFs—notably, even more so with deep learning approaches!

Application # of LFs Coverage Training Overlap Conflict F1 Improvement F1 Improvement
(%) Set Size (%) (%) (Human Features) (LSTM)

TAC-KBP 40 29 2M 1.38 0.15 1.92 3.12

Genomics 146 54 256K 26.71 2.05 1.59 0.47

Pharma 7 8 129K 0.35 0.32 3.60 4.94




